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ABSTRACT 
The research focused on the elaboration of the Condition-Based Maintenance (CBM) 

for the optimization of Smart Manufacturing Processes (SMP) using three types of 

condition monitoring (CM). The paper presents some considerations regarding the 

Smart Manufacturing Processes (SMP), especially focused on the Additive 

Manufacturing (AM) process, by Fused Deposition Modelling (FDM) technology and 

the way in which the CM and mathematical and probabilistic models can be used, for 

achieving CBM. The experiments focused on testing three different types of CM: 

vibration (by vibrometers), sound (by sound level meters) and temperature (by 

thermal camera and infrared thermography). The experiments and results were 

analysed, data were processed and a probabilistic model was designed, based on 

statistical methods, using features/key indicators and their thresholds values. 

Furthermore, a specific model based on Bayesian network was developed, for 

achieving CBM of the SMP, specifically to the AM/FDM process. This technique and 

approach can represent a successful integration of a large number of data monitoring 

sets and complex modelling and analysis capabilities which can lead in the end to an 

optimisation of the SMP. 

 

KEYWORDS: Condition-Based Maintenance (CBM), Condition Monitoring (CM), 

Additive Manufacturing (AM), Fused Deposition Modelling (FDM), Infrared 

Thermography (IRT), vibration analysis, sound analysis, Bayesian networks (BNs). 

 

 

1. INTRODUCTION 
 

The smart manufacturing industry is continuously 

increasing its efficiency and effectiveness by 

improving the supply chains, for meeting the 

requirements in terms of productivity and performance 

[1], [2]. Furthermore, the concept of smart 

manufacturing processes (SMP) involves systems 

capabilities to be flexible, robust, and adaptive. 

However, the introduction of lean manufacturing 

increases issues of equipment availability, and 

therefore, an effective maintenance is compulsory to 

industry sector [3], [4], [5].  

One of the cutting-edge technologies that is 

considered a SMP is the additive manufacturing (AM), 

also known as 3D printing. The definition provided by 

the International Standardisation Organisation and 

American Society for Testing and Materials (ASTM) 

in the unified standard ISO/ASTM 52900:2015 is that 

AM is “the general term for those technologies that, 

based on a geometrical representation, create physical 

objects by successive addition of material”. The 

standard also highlights various domains of 

applications in engineering industry, and also 

medicine, education, architecture, and creative 

industries [6]. The SMP challenges in AM 

technologies are related to fostering the design for 

user-friendly, safe and self-contained, flexible and 

integrate systems that could provide rapid prototyping, 

reverse engineering methods and speed, doubled by 

quality, resolution and no further additional finishing 

of the 3D objects [7], [8]. 

For these reasons, the maintenance is becoming 

very important for the manufacturing industry, due to 

the worldwide industrialization agendas, that includes 

the concepts of Industry 4.0, industrial internet of 

things (IIoT), cyber-physical systems (CPS), including 

artificial intelligence (AI), machine learning (ML) 

technologies, in a digital transformation era. These 

technologies will promote the collaborative connection 

between equipment, devices and enterprise assets, 

using Internet, Big Data solutions and Cloud 

Computing [9], [10], [11]. In terms of maintenance, the 

concept refers to the elaboration of a policy that should 
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be applied in agreement with the manufacturing 

company’s management, that should take into 

consideration the objectives, but also the operations, 

materials proprieties, the behaviour of the equipment 

in the production flow, the application conditions, and 

the costs. For this reason, in the manufacturing industry 

there are two main types of maintenance used: 

corrective maintenance and preventive maintenance 

[12]. These types of maintenance, applied in the 

manufacturing environments, require a detailed 

optimisation of the production planning and control in 

order to avoid a potential slow down or shut down of 

the production lines, poor operational activities, 

potential risk of injury of the workers, flaws in the raw 

material flow, which will increase the cost of work-in-

process. Proper planning should include cost-based, 

availability-based and reliability-based approaches, in 

order to proper schedule the number of interventions 

and the optimum maintenance interval [13], [14], [15].  

Condition-Based Maintenance (CBM) is an 

industrial program that puts forward strategic 

maintenance actions upon data acquired through 

Condition Monitoring (CM), that is related to the 

acquisition and processing of information and data that 

indicate the state of a machine over time [8]. CBM 

includes integrated CM methods, in order to avoid 

unnecessary intervention actions and decides when the 

maintenance is required in cases of abnormal 

behaviours of the systems, equipment or devices [16], 

[17]. A strategic CBM plan accurately implemented 

can significantly reduce intervention costs by reducing 

the number of unnecessary scheduled preventive or 

corrective maintenance operations [3], [4], [18].  

The CBM is related to three important issues: 

- Detection – when the fault is developing, at an 

early stage; 

- Diagnosis – what is the nature of a fault and the 

examination; 

- Prognosis – forecasting the trend and enabling 

the maintenance plan. 

In order to attain the forecasting process for 

CMB, there are various CM technologies that can be 

used for diagnosis and analysis of the data acquired 

from the manufacturing processes flow: vibration, 

ultrasonic, oil and noise analysis and, also, infrared 

thermography. In figure 1 are presented the main CM 

methods their threshold levels which forecast the 

maintenance time and predicts the breakdown of the 

systems, equipment or devices [19].   

 

 
 

Fig. 1. CM methods and threshold levels for CBM [19] 

There are many applications of the SMP, where 

the sensors get significantly bent, and undergo changes 

in temperature and humidity, which could be 

detrimental to the reliability of data being collected. 

This requires a strategic plan of the measurements in 

order to gather reliable and relevant data. This plan 

should include adjustments and calibrations of the 

devices according to the specific standards, testing of 

the measurement systems in different environmental 

conditions, and taking into consideration the lurking 

variables. This plan helps researchers in the 

identification of methods for reducing variations and 

minimising the data inconsistency, and achieving 

experimental accuracy.  

As a conclusion, based on the researches in the 

scientific literature, it can be said that the CBM is a 

complex fundamental and experimental field, that uses 

advanced devices and equipment for processes 

monitoring, statistical analysis and high-level 

algorithms for data processing, in order to identify the 

specific times for performing the maintenance process. 

Taking into consideration all the above, the authors 

developed a system that included different devices. 

The main goal of this research is to investigate the 

condition monitoring techniques in the smart 

monitoring processes, specifically where advanced 

manufacturing technologies can be applied.  

 

2. EXPERIMENTAL PART 
 

The experiments were conducted in the laboratory of 

Mechatronic Systems from "Dunarea de Jos" 

University of Galati, Faculty of Engineering, 

Manufacturing Engineering Department. This included 

the analysis of the CBM based on infrared 

thermography, vibration analysis and acoustics, on the 

AM process achieved by using the Creality CR-10S 

PRO 3D printer [20]. The 3D printer is using the fused 

deposition modelling (FDM) technology, with 

automatic and auxiliary levelling modes, filament 

detection (PLA, ABS, wood, TPU, carbon fibre), 

double gear extrusion mechanism, a motherboard with 

four-layer PCB, TMC ultra-quiet drive 256 

subdivision, for precision printing.  The printing size is 

300 x 300 x 400mm and can achieve up to 60 mm/s 

printing speed [21]. It is using both Cura, and Simplify 

3D slicing software. The main scope of the research 

was to analyse three different methods of condition-

based monitoring for achieving CBM, using three 

techniques, by measuring: the temperature (by thermal 

camera and IRT), the accelerations/vibrations (by 

vibration meters), and the sound (by a sound meter).  

 The design of the research methodology (Fig. 2) 

included the setting on a framework with devices, 

software and techniques for achieving the CM. The 

positioning of the devices can be observed as well as 

the connections between these and the main methods 

of CM in the real conditions of the AM-FDM process.  

In the experiments, the piece P1, a clamping system 

(Fig. 3), was printed using the Creality CR-10S Pro 3D.
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Fig. 2. Research methodology 

 

    
a) b) c) d) 

  
f) 

Fig. 3. The 3D model of the piece P1 (a clamping 

system); left  a), right b), front c), isometric  d) and 

final printed parts e-f 

 

The AM-FDM process that took place about 3h and 50 

minutes. The 3D model was created in SolidWorks and 

exported like STL file. Afterwards, using the Simplify 

3D software was created the G-code file, and imported 

in the 3D printer flash-drive. The material for printing 

the piece was polylactic acid (PLA) with the printing 

temperature between 180–230⁰C and build platform 

temperature of 20–60⁰C. The experiments followed the 

CM of the Creality 10S Pro 3D printer nozzle area and 

two motors, respectively NEMA 17 stepper motors 

[22]. The stepper motors are DC motors with multiple 

coils, allowing them to move in small increments. 

These are used for the printer head positioning, speed 

control, and low speed torque, and also for the printer 

wire feeding system. These motors are very accurate 

and feasible still, they have their limitations. At start, 

the stepper motor current consumption is independent 

of load. When a motor is not moving, it will still 

consume a large amount of current. Stepper motors 

also tend to lose torque at high speeds. Some stepper 

motors are designed for high speed torque, but the 

performance of these motors is also greatly dependent 

on the stepper drivers paired with them. Thereby, the 

CM of the 3D printer motors is crucially for achieving 

high quality 3D parts and proper functionality of the 

printer. Furthermore, for analysing the behaviour of the 

motors and of the 3D printer nozzle, during the AM-

FDM process, the research experimental design 

followed is presented din figure 2. 
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2.1. IRT Monitoring 
 

In the field of CBM, infrared thermography is a widely 

used technique for evaluating part conditions and is a 

very important tool for ensuring the safety and 

reliability of the equipment. For the IRT monitoring, in 

the experiments, the ThermoVision A20M thermo 

camera (Fig. 4) was used, a device that allows to 

measure temperature differences as small as 0.12° C in 

a range from -20° C up to +900°C. It produces high-

resolution images (320 x 240 pixels), offering more 

than 76,800 individual measurement points per image 

at a refresh rate of 50/60 Hz. The data can then be used 

by the operators to monitor or control the production 

processes, or can be processed by the camera’s on-

board intelligence to autonomously generate multiple 

independent digital alarms or even control process 

equipment [23]. The IRT is appointed by the method 

potential and efficiency, that allows to detect 

temperature variation, revealing the appearance of 

major defects that may affect the operational safety of 

the production equipment. The positioning of the 

camera wat at 1-meter distance from the monitored 

area and the specific parameters of emission, ambient 

temperature and humidity were introduced for the 

condition monitoring. 

 

  
 

Fig. 4. ThermoVision™ A20M camera [20] Fig. 5. Vibrometer Quest VI-100 [24] 

 

2.3. Vibration Monitoring 
 

The second part of the experiments was related to the 

vibration encountered during the AM-FDM process. 

For the vibration monitoring, two methods of analysis 

were used: a contact condition monitoring, using a 

smart phone that was positioned on the 3D printer 

during the process, and an industrial device for the 

calibration of the measurements. The measurements 

were performed using a Huawei P20 smart phone (Fig. 

6a) that included the accelerometer sensors, and 

measures along each of the main axes of the device. By 

convention, the axes are labelled as figure 6b presents. 

On the device, a mobile application called VibSensor 

was downloaded from Google Play and installed for 

recording data (Fig. 6c).   

 

  

 

 

 

 

VibSensor 

a) b) c) 

 

Fig. 6. Device for real time vibration monitoring 

 
The industrial vibrometer Quest VI-100 was used 

for calibration, and it is a device that can evaluate 

equipment vibrations and estimate the effectiveness of 

isolation. The VI-100 is suitable for general-purpose 

industrial or environmental applications. It measures 

shock or pulsation, basic machinery condition 

monitoring, makes comparative studies, quality 

specification checks and can be used in calibration of 

different other vibrometers [24]. The vibration range 

that Quest VI-100 can measure for acceleration is 

between 0.01 and 199.9 g, for displacement between 

0.01 to 199.9 m x 10-5 and velocity between 0.01 to 

199.9 cm/sec. The supported frequency range is 

between 5 to 10,000 Hz with analog output in AC 

signal of maximum 5V, relative to signal ground, and 

in DC for high range a signal of maximum 2V relative 

to signal ground, and 10 mV of root mean square 

(RMS) signal per count of 1.0 in the display and for 

low range 100 mV of RMS signal per count of 1.0 in 

the display.  

 

2.2. Sound Monitoring 
 

The third part of the experiments was related to the 

sounds encountered during the AM-FDM process. In 

the field of non-destructive testing, acoustic emission 

is a method that allows to perceive in real time the 

occurrence of a signal resulting from a cohesion in a 

material. It is also a method of voluminal control due 

to the emission and propagation of elastic waves. The 

measurements were performed using a Larson Davis 

831 Sonometer model [25].  

The Larson Davis Model 831 Class 1 Sound 

Level Meter, with its high definition display, is a 

versatile device, performing the functions of several 
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instruments. It combines the features of a precision 

Class 1 sound level meter, environmental noise 

analyser, personal noise dosimeter, and a real-time 

frequency analyser. The Model 831 is a fifth generation 

Larson Davis sound level meter, designed for simple, 

single-handed operation, is fully featured, smart and 

versatile with an ever-expanding firmware platform. 

The design of the Model 831 was based on countless 

inputs from customers. It expands upon the Larson 

Davis tradition of delivering value, innovation and 

function in a rugged, single-handed, expandable 

package and is backed by a 2-year factory warranty, 

24-hour application support and accredited factory 

service/calibration [22]. 

 

 
 

Fig. 7. Sound Meter Larson Davis 831 [22] 

 

2.4. Data Analysis and Processing Software 
 

In the experiments, several programs have been used 

for the design, analysis and monitoring of the smart 

manufacturing process, in this case the 3D printing 

process: 

1. ThermaCAM® Researcher™ from Flir: monitors 

and analyses changes and temperature variation in both 

motors and nozzle area. It digitally stores and retrieves 

static and real-time infrared images, digital video 

sequences, dynamic high-speed events and data 

directly, allowing in-depth and analysis of thermal 

events [26]. 

2. Noise & Vibration Works (NWWin): analyse the 

results of vibratory and acoustic monitoring. NWWin 

is a software designed specifically for handling Noise 

and Vibration data, that provides reporting and 

application modules for Environmental, Workplace, 

Sound Power, Architectural, and Automotive Pass-by. 

It can handle the native files from all Larson-Davis and 

Sinus instruments as well as any meter that can export 

*.csv format [27].  

3. VibSensor is a mobile application for vibration 

recording, analysis and data storage. The application is 

used for live displaying of the acceleration, speed and 

displacement data in real time. The acquired data are 

compared to the data retrieved from the industrial 

vibration measurement device VI-100 [28]. 

4. Cura for the 3D printing: creates the integration 

between compatible 3D printers, software and 

materials and it is an open source cross-platform. It has 

plugins for any CAD software and optimized profiles 

for third-party materials and supports STL, OBJ, X3D, 

and 3MF file formats [29]. 

5. Simplify 3D is a software that includes a realistic 

pre-print simulation, allowing to see the exact actions 

of the 3D printers, that will perform before starting the 

printing. The simulation includes information about the 

exact speeds, sequences, and printer settings, so can 

quickly verify the setup from the beginning [30]. 

 

3. RESULTS AND DISCUSSION 
 

3.1. Temperature Field Distribution  

 
The IRT monitoring was performed during the entire 

period of the AM-FDM process (Fig. 8). This included 

the Z1 phase, where the printer calibration was 

achieved and included the period of printer head 

heating, with a total time of 8 minutes, the Z2 phase in 

which the AM-FDM process was carried out, and 

lasted for 177 minutes, and the Z3 cooling phase, that 

started from the minute 185, as figure 9 to figure 11 

show. Three points from the motor M1 were chosen for 

analysis and used for the wire feeding system, 

respectively the spots SP1, SP2 and SP3 and three 

points from the motor M2 used for the mechanical 

system positioning, respectively the spots SP4, SP5 

and SP6, positioned on the axial line of the motors. 

Moreover, the zone from the 3D printer nozzle (printer 

head) was marked using an area, AR1 respectively, in 

order to determine the maximum temperature.  

 

   
a) b) 

Fig. 8. AM process monitoring using IRT: a) experimental setup; b) monitored areas during the process 
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Fig. 9. Temperature field distribution at min 35, 

when SP01-6 from the M1 and M2 reached the 

maximum temperature  

Fig. 10. Temperature field distribution in the nozzle 

area AR01, when maximum temperature was 

reached, at the end of the 3D printing 

 

  
     a)          b) 

Fig. 11. Temperature variation during the AM-FDM process: a) on the motor M1 in SP1, SP2 and SP3; b) on the 

motor M2 in SP4, SP5 and SP6 

 

 In figure 11 is shown the temperature field 

distribution during the AM-FDM process, when the 

maximum temperature on the motor M1 and motor M2 

was achieved. Moreover, as figure 11a and b show, the 

maximum temperature reached during the entire period 

of the AM-FDM process - Z2 in the M1 was achieved 

at time t=35min, in SP01 at a temperature of 46.109°C, 

SP02 and SP3 of 46.25°C. As predicted, the maximum 

temperature in motor M2 was achieved at the same time 

t=35min, in SP04 at a temperature of 46.31°C, SP05 of 

44.83°C and SP06 of 45.35°C.  

 The minimum temperature from the Z2 was 

achieved at the end of the AM-FDM process, at 

t=185min, respectively on the motor M1 of 36.49°C in 

SP01 of 40.06°C in SP02 and of 41.21°C in Sp03, and 

on the motor M2 of 41.06°C in SP04, of 40.44°C in 

SP05 and of 40.82°C in SP06. 

 It can be also noticed that the temperature 

variation of the points SP01-06, for both motors, 

follows a similar trendline during the AM-FDM 

process. However, an inflection point in the Z2 area 

occurred at time t=110s, where the temperature of the 

motors decreased as in M1 in SP01 at 41.32°C, in SP02 

at 41.86°C and in Sp03 at 41.36°C, as well as the M2 

in SP04 at 41.46°C, in Sp05 at 40.72°C, and in SP06 at  

40.95°C. This phenomenon is explained by the fact that 

the printer finished printing the outer (exterior) part of 

the piece and after time t=110min it started printing the 

inner part (interior) as it can be seen in figure 3c. 

 Because of the fact that the area chosen to 

represent the temperature measurements for the nozzle 

zone, respectively AR01 is fixed, and because of the 

fact that, in real time condition of the AM-FDM 

process, the nozzle is mobile, moving along the 3D 

printer plate in order to print the 3D object, it is very 

difficult to achieve data processing of the specific area. 

For this reason, other methods of condition monitoring 

can be applied for the nozzle area, and other solutions 

should be investigated in order to obtain proper IRT 

results and temperature thresholds. 

 

3.2. Vibration Recording and Analysis  
 

The second CM applied on the AM-FDM process is the 

vibration monitoring, analysis and data processing. 

This was achieved by using the VibSensor mobile app, 

that records, analyses, stores, and emails accelerometer 

and vibration data, offering live display of the tilt and 

vibration data in real time, acquisition (timed 

acquisition, with settable delay and duration; it collects 

raw accelerometer data for up to 10 minutes at max rate 

allowed by device), data storage (on the device, with 

date and time stamp for later retrieval, analysis (data 

collection can be viewed to see the raw accelerometer 

data, processed tilt and vibration, and calculated power 

spectral densities, both in graphical and report format) 
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and email access features, in which users can email raw 

or processed data in text (csv or tab-delimited) or 

MATLAB format. The measurements were performed 

on the entire AM-FDM process Z2, in the same time 

with the IRT [28]. The raw accelerometer data contains 

the effects of gravity plus any other accelerations the 

device may be experiencing. In Live View, this data is 

split into slowly varying Tilt and quickly varying 

Vibration data. For tilt data, a full hemisphere means 

one g of acceleration. The scale for vibration data is 

indicated by the small-scale bar, and ranges from 0 to 

0.5g. Typical devices actually have a full range of -2g 

to +2g. The smaller range in Live View is chosen to 

emphasize smaller vibrations. The data acquisition 

related to the vibrations of the 3D printer was triggered 

at the beginning of the manufacturing process. Each 

data consisted of raw, time-stamped acceleration 

information, that was automatically saved into a 

database, with a date and time stamp that allows later 

viewing, analysing, and exporting in different formats, 

such as *.csv, *.txt or *.m files. The frequency range 

of acquisition can be modified in the settings. The 

"high" range collects at the maximum rate supported 

by the device and allows analysing vibrational 

frequencies between 0.03 and 50 Hz. The "low" range 

extends this by averaging to allow analysis of 

vibrations with periods as long as 5 minutes [28].  

 In figure 12 is presented the power spectral 

density (PSD) in the case of the vibration testing, or 

better said the acceleration spectral density measured 

and logged using the Huawei P20 device and 

VibSensor mobile application. The PSD allows to 

interpret which are the strongest and weakest vibration 

frequencies. Furthermore, the application gives 

information related to the following data:  

▪ Length: 229 min 57 sec 

▪ Points: 46.173       

▪ Gaps: 10 from 13377 sec total 

▪ Data rate: 100.0 Hz      Units: m/s2 

▪ Peak raw: X (Limit) Y (11.64) Z (Limit) 

▪ Integrated Spectral Density - ISD:  

 X (0.28) Y (0.41) Z (0.28) 

▪ Resonances: 

  X: 0.13 Hz (0.078), 4.5 Hz (0.0068) 

  Y: 0.085 Hz (0.59), 7.4 Hz (0.021) 

  Z: 0.024 Hz (0.033), 32 Hz (0.026) 

 

 
 

Fig. 12. Vibration Power Spectral Density measured 

using smartphone and VibSensor application 

 The resulted data were compared to the Vibration 

meter Quest model VI-100 industrial vibration meter in 

order to calibrate the sensors and also to validate the 

measurements. VibSensor application installed on the 

Huawei P20 smartphone has proven to be reliable and 

accurate for the proposed measurements for 

monitoring the 3D printing process. 

 

3.3. Sound Recording and Analysis  
 

The third part of experiments was related to the sound 

encountered during the 3D printing process. In the field 

of non-destructive testing, acoustic emission is a 

method that allows to perceive in real time the 

appearance of a signal resulting from a cohesion in a 

material. It is also a method of voluminal control due 

to the emission and propagation of elastic waves. The 

measurements were performed using a Larson Davis 

831 Sonometer model [25]. Figure 13 shows the 

measured and logged sound signals during the AM-

FDM processes. The data processing and analysis were 

performed using NWWin and the main parameters 

measured were the A and C weighted equivalent 

continuous sound levels in decibels – LAeq,T, LCeq,T, 

maximum, minimum and peak value LCpeak. As it can 

be noticed in figure 13, high values of the sound 

monitoring are observed during the AM-FDM process, 

where the 3D printer is working on creating the 3D 

piece presented in figure 3.  

 

 

 
 

Fig. 13. Measured and logged sound signals using 

Larson Davis 831 sonometer  

 

3.4. Bayesian Networks Model for CBM 
 

Bayesian networks are graphical models consisting of 

nodes representing stochastic variables and directed 

links between the nodes, representing causal 

relationships. For a discrete model, each node has a 

discrete number of states, corresponding to the possible 

outcomes of the stochastic variable. If the stochastic 

variable is in fact continuous, it can be discretized so 

that each state represents an interval of values.  
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Fig. 14. Three-model Bayesian networks applied for 

achieving CBM 

 

 To define the Bayesian network, the conditional 

probability distribution must be specified for each node 

conditioned on parent nodes (the nodes pointing 

towards a node). For a node with no parents, the 

marginal distribution is specified. The network can 

then be used for calculating the probability of each 

state for each of the nodes, and these probabilities can 

be updated, when any of the nodes is observed [31], 

[32], [33], [34]. 

 As shown in figure 12, it can be assumed that the 

faults of the 3D printer component (motors or nozzle) 

can be optimally detected by a hybrid of three 

diagnostic agents or fault detection methods. The 

probability of detection for each diagnostic agent is 

defined within a Confidence Matrix. Once the 

individual diagnosis of each agent is estimated and 

placed in a Diagnosis Matrix, the total probability 

theorem can be used to incorporate all probabilistic 

fault detection results into one final answer.  

 Bayesian network design with 3 inputs (M1 & 

M2 & Nozzle) is connected to 3 neurons or diagnostic 

agents (Thermography, Vibration Monitoring and 

Sound Monitoring). Each neuron is connected to 

individual diagnosis and all of them are combined as 

probabilities of Functioning or Non-functioning 

components. For example, if temperature of M1 has a 

high level, the 3D printer cannot function. And if the 

vibration of nozzle is very high, the 3D printer gives 

bad result, and the 3D piece is not printed properly. 

 

4. CONCLUSION 
 

The condition-based maintenance for the optimization 

of smart manufacturing process is absolutely critical 

for the proper functioning of the complex systems and 

devices. The paper addresses the condition-based 

maintenance (CBM) of the additive manufacturing 

(AM) processes, using three types of condition-

monitoring (CM): infrared thermography (IRT), 

vibration monitoring (VM) and sound monitoring 

(SM). Multiple software for different data acquisition, 

analysis and processing were studied and used: 

ThermaCAM® Researcher™ from Flir for IRT, Noise 

& Vibration Works (version 2.4.1) for noise and 

vibration analysis, VibSensor for vibration mobile 

recording, Cura and Simplify 3D for 3D printing. All 

the devices and equipment used were properly 

calibrated ensuring the experimental accuracy. 

 The measured data served to the development of 

a probabilistic model using Bayesian Networks, for a 

condition-based maintenance model in the case of the 

AM process. This technique and approach can 

represent a successful integration of a large number of 

data monitoring sets, with complex modelling and 

analysis capabilities, that can lead, in the end, at an 

optimisation of the AM process. 

 Summarizing, from the results obtained, it can be 

concluded that Bayesian probabilistic networks (BNs) 

can clearly contribute to the improvement of the CBM 

strategies, specifically when the data obtained from 

monitoring has non-linear behaviour and the classical 

mathematical models cannot be applied. 

 In conclusion, the paper addresses complex 

fundamental and experimental researches with wide 

application in Industrial Engineering field, and 

specifically in Condition-Based Maintenance. The 

proposed model, reproduced at larger scale, can be 

applied in industry, not only on CNC machines, as the 

3D printer can be considered, but also to robotic 

assembly lines, 3D coordinate measurement systems, 

portal cranes, etc. The measurement of vibration, 

sound and temperature can be done continuously, and 

the monitored values can be integrated into a self-

diagnosis monitoring system, as  those encountered to 

the modern cars, and, in an unfortunate event, when the 

machine receives a defective or abnormal data value, 

alarming systems are triggered and visuals appear and 

are signalled on specifically designed dashboards. 
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