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ABSTRACT 
Pressure welding on cogged surfaces represents a new technological variant of the 

cold welding. The components that are made from a material with higher plasticity 

(aluminium, lead etc.), having flat surfaces, are pressed on or between the harder 

material components (copper, brass, carbon/stainless steel, titanium, etc.) that have 

cogged surfaces. The main particularity of this technique is to achieve an 

appropriate joint by deforming only the component with higher plasticity. Due to the 

low degree of deformation needed, reduced pressure forces are applied in 

comparison with the classical cold pressure welding. The welding in isolated 

catching nodes is achieved by gripping, while the aluminium is gliding on the flanks 

of the teeth. The tensile strength of the joint is relatively low reaching up to 10% of 

the aluminium part, but can be improved by applying a heat treatment. Welded 

joints were made in various combinations, resulting in bimetallic or multilayered 

workpieces. Due to the negligible contact resistance, these joints can be 

appropriately used for applications in the electrotechnical field. 
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1. INTRODUCTION 

 

The welding of aluminium alloys presents some 

difficulties due to the formation of an oxide layer on 

their surfaces. They can be assembled in different 

mechanical methods like gluing, welding  (hot or cold 

welding), and hybrid methods (mixed) [1]. Cold 

welding consists of joining similar or dissimilar 

metals at temperatures below the melting point and 

without the use of filler material [2–7]. Among the 

processes used for cold welding are friction stir 

welding [8–11], rotary friction welding [12–15], 

diffusion bonding [16–19], explosive welding [20–

23], or ultrasonic welding [24–27], each of them 

having their own advantages or disadvantages.  

The principle of pressure welding consists of 

bringing the peripheral atoms of the components at 

the distance comparable with the lattice constant, so 

that a good connection is achieved. In order to obtain 

quality joints, cold pressure welding has the following 

particularities [28]: 

• thorough cleaning of the surfaces to be welded, 

before the moment the pressing force is applied; 

• plastic deformations must reach values above 

70% in the case of aluminium alloys and above 

90% in the case of copper; 

• the use of elevated discharge pressures due to the 

occurrence of strong strain hardening of the 

material during deformation; for example, the 

necessary pressure in the case of soft aluminium 

(annealed) is 800-1000 MPa, 8-10 times higher 

than its tensile strength. 

• Cold welding is applicable in end-to-end variants, 

in points, or by cold rolling. 

 Butt cold welding is used for welding wires, bars 

(having a diameter between 0.05-13 mm), or profiles 

of reduced transversal sections, made from easily 

deformable materials like aluminium, copper, gold, 

platinum, silver, lead, tin, cadmium, etc. This 

procedure produces quality joints with good 

mechanical resistance, with the fracture occurring in 

the base metal as can be seen in figure 1 [29]. One of 

the most important applications is welding aluminium 

or copper wires that are in the process of trellising. 

 

 
 

Fig. 1. Aluminium bars butt cold welded [29] 
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Cold welding in points is applied to sheets with 

0.2-15 mm thickness stacked and pressed locally with 

the help of piercers, usually having a circular form. 

Local deformation can be achieved bilaterally (Fig. 

2a) with two pins for obtaining a symmetrical 

deformation of both components and unilaterally with 

one piercer when an aesthetic joining is desired (Fig. 

2b). Two or more sheets of the same or of different 

thickness can be welded (Fig. 2c). A specific 

application is the welding of aluminium couplings 

from the power supply stations of trans-siberian 

railways. This has important economic effects by 

eliminating the use of copper completely [30]. Thus, 

sections between 5x60mm and 10x100mm were 

welded in 4-5 points and were used for conducting 

electric currents of up to 18.000 A.  

 

    
a)      b) 

c)  

 

Fig. 2. Aluminium plates joined by cold welding [28] 

 

Cold roll welding. This process is applied for 

obtaining bilayered or multilayer joints. The strips of 

different materials that are about to be cold rolled 

welded together are passed through straightening, 

smoothing, and cleaning machines. Usually, the 

joining is not done on the entire surface of the strip 

but on numerous centers (nodes) of the metal links. 

These are enough to accomplish the joint, and allow 

bending of the multilayer strips into rolls without 

breaking those bonds [31].  

 This paper presents an approach of a new cold 

pressure welding technique that was developed within 

the Centre for Advanced Research in Welding 

(SUDAV) from "Dunarea de Jos" University of 

Galati. Cold pressure welding on cogged surfaces is 

especially suitable for joining dissimilar metals. It is 

well known that welding heterogeneous materials 

raises certain challenges [32]–[35], and this new 

procedure can offer solutions for some of them. 

 

2. PROCESS DESCRIPTION  
 

The process consists of pressing plastic material 

components, having flat surfaces, on harder material 

ones that have cogged surfaces. It is intended to 

deform only the plastic component. This method is 

destined mainly for the welding of aluminium alloys 

with other metals.  

 The cogged surfaces preparation can be 

theoretically justified by the following aspects: 

• the tilted or zigzag welded surface is larger than 

the area of the normal section of the components 

to be welded. For this reason, it offers good 

mechanical strength, even if the strength per unit 

area of the weld is low due to punctiform grips or 

inclusions; 

• the existence of tangential stresses in addition to 

the normal ones favourably influences the 

clamping and cold welding processes;  

• the low-speed movement of metals in the welding 

area helps to eliminate the oxide films resulting in 

cold welding by sliding (gripping). 

In the practice of pressure welding, there are 

various situations that support the statements above 

and can be considered a starting point for welding on 

cogged surfaces. 

Tilted butt welding has been applied since ancient 

times to forge welding in which the preparation of the 

ends is done in the form of a feather or in the shape of 

a "wolf's mouth" (welding in a "V" shape). It is still 

applied today to butt welding of wires. Figure 3a 

shows the microstructure of a cold-welded joint, 

inclined, end to end, with multiple discharges [36]. 

Welding of bimetallic passages is used in 

aerospace construction and oxygen production plants. 

Aluminium + titanium and aluminium + stainless steel 

tubular bimetallic elements were made. The 

longitudinal section of the joint has a characteristic 

appearance, as in figure 3b [28], where it can be 

observed the processing of some circular channels in 

the hard component.  

Explosion welding is used for plating large 

surfaces, intended for military armour or chemical 

industry containers, in various combinations of 

materials. Due to the strong impact, the materials 

behave as if they were plasticized. They intertwine, 

forming characteristic waves, as in figure 3c. 

The main practical advantage of serrating the 

surfaces is the possibility of cold welding by 

deforming only the more malleable metal component, 

with a much lower degree than in the case of classical 

welding by pressure. This aspect is presented in figure 

4. The samples pressed on cogged surfaces were 

properly welded, while at the same degree of 

deformation, the flat surfaces could not be joined [4]. 

 

3. WELDING TECHNIQUES 
 

Cold pressure welding on cogged surfaces can be 

classified in two groups of joints made by Direct 

Welding (DW) and Indirect Welding (IW), 

respectively: 
a) with soft intermediary metal; 

b) with hard intermediary metal. 
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a)  

b)  

c)  

 

Fig. 3. Welded joints performed by pressure welding 

on cogged surfaces. 

 

a)  

b)  

 

Fig. 4. Aluminium and copper samples pressed with 

the same deformation rate: a) cogged surfaces joint; b) 

lack of joint on flat surfaces 

 

Welding can be done directly, between two 

components with different plasticity, or indirectly, 

between two components with the same plasticity 

using a different intermediate material. The use of an 

intermediate layer allows to weld materials that:  

• are difficult to be deform, which would require 

the use of very high pressures; 

• have different mechanical characteristics, without 

mutual solubility in the solid state; 

• are difficult or impossible to hot weld, as in the 

case of materials with very different coefficients 

of expansion. 

• the main element in the indirect welding is the 

intermediate layer which must be weldable with 

each component separately. Depending on its 

plasticity related to the materials to be welded, we 

can distinguish the following situations: 

• cold welding on cogged surfaces with a soft 

intermediate layer; 

• cold welding on cogged surfaces with a hard 

intermediate layer. 

It is noted that this characterization of plasticity is 

relative, not absolute. For example, copper is more 

easily deformable (softer) than steel but harder 

(harder to deform) than aluminium or lead. 

 

3.1. Direct Welding 
 

Cold direct welding on cogged surfaces is performed 

by pressing an easily deformable metal on the serrated 

surface of a harder material (Fig. 5).  

 

  
a) 

  
b) 

  
c) 

  
d) 

 

Fig. 5. Welded joints achieved by pressure on cogged 

surfaces: a) Al+Cu; b) Al+Brass; c) Al+Steel; d) 

Al+Stainles steel 
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 The surfaces to be welded were mechanically 

cleaned with a rotating stainless steel wire brush at a 

speed of 2800 rpm. Immediately after cleaning, free 

pressing (without limiting the deformation of the 

aluminium) on a hydraulic press was performed. 

Welded joints were made between aluminium (soft, 

easily deformable component) and copper, brass, 

carbon steel, and stainless steel (harder, cogged 

component). A 200N/mm2 pressing force is necessary 

to obtain quality joints. The macroscopic analyses of 

the joints made from 30mm diameter components are 

presented in Figure 5. It can be observed that the 

joints show no visible defects and the penetration of 

the softer material into the harder one is complete. 

Tensile and shear tests were performed on the 

welded joints, using specially designed equipment, as 

presented in Figures 6 and 7. 

 

    

 
 

Fig. 6. Equipment used for tensile testing 

 

   
 

Fig. 7. Equipment used for shear testing 

 

Based on the results of the tests performed, the 

following characteristics of the joints welded on 

cogged surfaces can be stated: 

A. The geometry of the teeth must be chosen 

according to the dimensions of the parts to be welded. 

From theoretical point of view, it can be used any 

geometric shape for threading the section of the teeth: 

triangular, trapezoidal, square, or semicircular. The 

triangular shape is recommended due to its simpler 

shape that is easy to machine. 

 Regarding the direction and shape of the teeth in 

the plane of the welding surface, based on the 

experimental tests it is recommended that: 

• in the case of rectangular surfaces, the serration 

can be longitudinal (figure 8a) or transversal 

(figure 8b), this is preferable because it facilitates 

the flow of the metal, on a shorter path, along the 

indentations; 

• in the case of double symmetrical surfaces 

(square, circle, etc.), the direction of the serration 

has no influence (figure 9 c, d, and e); 

• the shape of the teeth in the plane of the surface 

to be welded can be linear, circular (figure 9e), 

square, hexagonal, etc. following the peripheral 

shape of the surface. The complex (double) 

serration in figure 8f provides superior 

mechanical resistance. 

 

 
 a)             b) 

 

 
c) 

 

 
                 d)                       e)                          f) 

 

Fig. 8. Teeth pattern 

 

The experimental tests also revealed that the ideal 

angle at the tip of the teeth is below 60 degrees due to 

the fact that, with its decrease the tensile strength of 

the joint increases (Fig. 9) [37]. 
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Fig. 9. Force determined for different teeth angles 

 

The size of the tooth step must be chosen 

according to the size of the parts to be welded. The 

force at which the welded joint beaks is higher as the 

step size increases (Fig. 10-11). A modification in 

step size from 1.5 to 3.5 mm leads to an increase of 

necessary force to break the joint of approximately 

200% in the case of transversal shearing, 300% for 

longitudinal shearing, and 200% for tensile. This can 

be explained by the increase in the length of the 

sliding path (gripping). In the case of welding small 

parts, it is recommended a step of 2.5 mm.  

 

 
 

Fig. 10. Preparation patterns of surfaces 
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Fig. 11. Fracture force at different pitch sizes: 

a) by transversal shearing; b) by longitudinal 

shearing; c) by tensile testing 

B. Degree of deformation. Welding takes place at 

a 20-30% deformation degree, by deforming only the 

aluminium component [38]. Lower deformation rates 

lead to an incomplete fill-inn of the serrated area as 

was observed both during experimental tests (Fig.12a) 

and numerical analysis (Fig.12b). The use of an 

exaggerated degree of deformation is inopportune and 

even harmful due to the development of cracks at the 

teeth’s base (Fig. 13). 

 

  
a) 

  
b) 

Fig. 12. Incomplete penetration when applying 

insufficient deformation rate: a) experimental tests; 

 b) numerical analysis 

 

 
 

Fig. 13. Crack development in cold pressure 

welding on cogged surfaces 

 

Due to the low deformation rate, the pressure 

required for welding is lower than in the case of the 

classical cold welding, reaching values of 

approximately 200 MPa 

C. Mechanical characteristics. The tensile 

strength of cogged surface welded joints is up to 10% 

of the strength of soft aluminium (50… 80 MPa). The 

shear resistance has higher values, going up to more 

than twice as much as tensile strength (table 1). 

Mechanical properties can be improved by heat 

treatment [39]. An increase in resistance of 
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approximately 300% is obtained by heating the 

welded joints at 500°C for 30 minutes, in normal 

atmospheric conditions [40]. 

 

Table 1. Tensile and shear resistance of welded 

samples [MPa] 

 

Joint 
Transversal 

shearing 

Longitudinal 

shearing 

Tensile 

strength 

Al+Stainles 

steel 
10,1 4,04 2,72 

Al+Steel 14,15 7,58 3,03 

Al+Bras 15,1 9,09 4,15 

Al+Cu 19,7 12,63 4,8 

 

D. Electrical contact resistance. Welded joints on 

cogged surfaces have a negligible electrical contact 

resistance, constant over time (Fig 14) without being 

influenced by clamping forces [41], [42]. 
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Fig. 14. Contact resistance vs. time of Cu-Al joint:  

a) joining by cold welded; b) assembling by screw 

  

3.2. Indirect Welding 

 

Experimental tests were carried out by cold pressure 

welding on cogged surfaces, using an intermediate 

layer in combinations of Brass + Al, Steel + Al, 

Stainless Steel + Al, Cu + Al, Cu + Al + Stainless 

Steel, Brass + Al + Steel types of joints. 
 

3.2.1. Soft Intermediate Layer 
 

It is recommended to use a soft intermediate layer of a 

plastic metal that is easily deformable (with smooth 

surfaces) to weld components made of rigid materials, 

which are difficult to be formed (that have a 

previously machined serrated surface).  

Experiments were performed using samples of 

copper, steel, or brass, and, as intermediate material, 

Aluminium 99.5% annealed (Fig 15) and lead (Fig 

16). It was noticed a much easier flow of the lead to 

the exterior and along the teeth of the welded 

components.  

   
 

Fig. 15. Welded joints with intermediate Al layer 

 

   
 

Fig. 16. Welded joints with intermediate Pb layer 

 

In Figure 17 there are presented the results of the 

mechanical tests of the welded joints with aluminium 

and lead intermediary layers. It can be observed that 

the strength of the ones with lead intermediate 

material is lower than those with aluminium, which is 

normal due to the difference in tensile strength of 

these metals. 
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Fig. 17. Tensile strength of welded samples with 

different filler material 

 

Compared to the tensile strength of the 

intermediate metal, the strength of the joint must be 

thought of differently. When using a soft aluminium 

layer, the resistance of the joint was less than 10% of 

the intermediary material. In the case of lead, the 

resistance of the joint equaled the one of the 

intermediary layers. The relative strength of the joint 

to the intermediary metal can be explained by the 

mechanism of joints’ formation during sliding 

(gripping) in the case of welding on cogged surfaces. 

The medium deformable metal (aluminium) slides 

harder on the surfaces and will have fewer points of 

attachment, resulting in lower resistance. The easily 

deformable metal (lead) slides more easily on the 

surfaces and will have an increased number of 

attachment points and higher resistance. 
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3.2.2. Hard Intermediate Layer 

 
This variant is used for welding two easily 

deformable metal components, with flat surfaces, on a 

cogged element made of harder deformable material. 

The intermediate element can have a shape similar to 

the components to be welded (polygonal, disc, shaft) 

and can be obtained by cutting, stamping, rolling, or 

bending (Fig 18). 
Welding tests were performed with the harder 

intermediate element embedded inside the more easily 

deformable ones. Figure 19a presents a joint between 

two 10 mm aluminium plates with a 60x60 mm 

square intermediate element, and Figure 19b a joint 

between a 5 mm flat aluminium strip and a lead plate. 

 

    
 

Fig. 18. Hard intermediate layer 

 

 
a) 

 

 
b) 

 

Fig. 19. Joints made with hard cogged intermediate 

layer 

 

4. CONCLUSIONS  
 

Following the study done on cold pressure welding on 

cogged surfaces, it can be concluded that: 
• cold welding on cogged surfaces is a simple 

method, easy to perform in any mechanical 

workshop.  

• it requires the thorough cleaning of the welding 

surfaces before pressing the components, in the 

usual conditions of the environment, on any type 

of available press. 

• it is recommended to machine the tip of the teeth 

at a below 60° angle for the serrated component. 

• increasing the size of the tooth step leads to a 

higher resistance of the welded joint. 

• welded joints on cogged surfaces have low 

mechanical strength and negligible electrical 

resistance, aspects which makes them suitable for 

use in the electrical field.  

 Further studies will be conducted to investigate 

by microscopy method the bond zone of the cold 

pressure joint.  
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