
THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO.1, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
__

HARDWARE IMPLEMENTATION OF A PIPELINED COMPUTATIONAL
UNIT FOR N-BODY SIMULATION

Ovidiu Panait

 Student, Department of Computer and Information Technology, The University
“Dunărea de Jos” of Galati, Romania

ovpanait@gmail.com

Abstract: This paper presents a pipelined FPGA implementation of an engine that
computes Newtonian gravitational forces. The module can be incorporated in a large-
scale N-body simulation as the primary component used for computing the interaction
between bodies. It uses 64-bit floating point arithmetic and relies on the speed provided
by the “Fast Inverse Square” root algorithm. The design was implemented and tested on
an Altera DE10-Lite FPGA.

Keywords: FPGA, pipeline, N-body simulation, floating point, reconfigurable platform

1. INTRODUCTION

An “N-body simulation” involves computing the
evolution of a system composed of N bodies, where
each object interacts continuously with the others.
Such simulations have extensive use in various
applications, such as the formation and evolution of
planetary systems, protein folding, and computer
graphics global illumination.

A specific type of N-body simulation is the
“Newtonian N-body problem” which involves
computing the positions of N bodies in space, at
equal discrete time intervals, assuming that the
bodies interact through gravitational forces only.

Due to the fact that this problem is very demanding
in terms of computational resources and floating-
point operations, custom computing machines and
GPUs are more suitable for high-performance
designs (Che et al., 2008; Tsoi et al., 2010; Jones et
al., 2010).

Extensive research has been done in the area of
FPGA-based solutions for the astrophysical many-
body simulation (Sano, et al., 2017; Kim, et al.,
2007; Gothandaraman, et al., 2006; Phillips, et al.,
2006; Lienhart, et al., 2002). Custom boards such as
the PROGRAPE-3 have reached speeds up to 40
GFLOPS (Nakasato and Hamada 2007), while
maintaining the specialized pipeline structure
flexible.

In the context of many-body simulations, Graphical
Processing Units are also good candidates for
implementing high-performance and efficient
computations (Bédorf, et al., 2012; Jetley et al.,
2010, Harris, 2005; Nyland, et al., 2007; Hamada and
Iitaka, 2007). In terms of processing power and cost,
GPU-based platforms seem to outperform FPGAs,
but the performance per Watt figure in O(N^2)
gravitational N-body simulations on FPGA systems
proved to be 15 times higher (Hamada, et al., 2009).

The solution presented in this paper takes the custom
hardware implementation approach on the FPGA,

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

__

 29

making the design flexible, high-performance and at
the same time keeping the power consumption low.
The pipelined architecture computes the interaction
between bodies with the increased accuracy provided
by the IEEE 754 double-precision floating point
operations and the speed of the “Fast inverse square
root” algorithm. The implementation and testing was
done on an Altera DE10-Lite hardware design
platform build around the MAX 10 FPGA chip with
50K logical elements available.

2. IMPLEMENTATION

The force vector on body i, caused by the
gravitational attraction of body j is

||||||||
)1(

2
ij

ij

ij

ji
ij r

r

r

mm
Gf ⋅=

where mi and mj are the masses of body i and j and rij

= xj – xi is the vector from body i to body j.

According to the superposition principle, the total
force Fi on body i, caused by the interaction with the
other N – 1 bodies is

∑
≠

≤≤

=
ij

Nj
iji fF

1

)2(

The design assumes a 2D simulation, therefore the
last stage of the pipeline will provide the X and Y
components of the gravitational force:

)()3(
3 ij

ji
ij xx

r

mm
Gf

x
−⋅=

)()4(
3 ij

ji
ij yy

r

mm
Gf

y
−⋅=

Where (xi, yi) and (xj, yj) are the positions of the i and
j bodies, and r is

22)()()5(ijij yyxxr −+−=

These results could be subsequently used to compute
the acceleration ai needed to integrate over time and
update the positions and velocities of particle I:

()
i

i
i m

F
=a6

where Fi is the total force Fi on body i, caused by the
interaction with the other N – 1 bodies:

() | || |∑
≤≤ Nj ij

ijj
ii

r

rm
Gm=F

1
3

7

2.1. Fast Inverse Square Root

A faster alternative to the computationally expensive
floating point technique of computing the reciprocal
of a square root is the “Fast inverse square root”
algorithm (Lomont, 2003). It was originally designed
for 32-bit floating point arithmetic, but the magic
value for 64-bit floating point operations was later
determined to be 0x5FE6EB50C7B537A9
(Robertson, 2009).

The algorithm starts with a very good first
approximation of the inverse square root of the input,
then it runs one iteration of Newton’s method, to
increase accuracy.

In this case, this algorithm is used to compute the
inverse square root of r3:

float Q_rsqrt(float r_cube)
{
threehalfs = 1.5F;
x2 = r_cube * 0.5F;
y = 0x5FE6EB50C7B537A9 - (r_cube >> 1);
y = y * (threehalfs - (x2 * y * y));
return y;
}

2.2. FPGA implementation and testing

The force module was synthetized and tested on an
Altera De10-Lite board, along with an UART
module, for testing purposes. The design is clocked
from the onboard 50MHz oscillator and makes use of
approximately 27 thousand logical elements from the
50 thousand available.

Fig.1. Hardware setup

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

__

 30

Fig.2. Resource utilization (Quartus II)

The force pipeline is fed through the serial port of a
computer running Linux, with the particles’ (x, y)
positions in 64-bit floating point representation. The
output values are the gravitational force components
on the X, respectively Y axis, which are transferred
from the FPGA back to the computer by the UART
module. An USB to serial converter was used for the
two-way communication.

Fig.3. Test setup

64-bit floating point addition and multiplication
blocks have been implemented in hardware.

The force pipeline consists of 10 stages, each stage
being executed in one clock cycle and having its own
multiplier/adder blocks incorporated. Because of the
local buffering done by the registers present in each
stage, the pipeline could be theoretically fed with a
new particle at each clock cycle, without the risk of
structural/data hazards.

In the current implementation, on-chip resources
(embedded multipliers and logical elements) have
been traded in favor of speed and accuracy. The high
number of embedded multipliers used in the design
(198 – 69% of the total available) is due to the
increased accuracy provided by the IEEE 754 double-
precision binary format. However, for some multi-
body simulation applications, this level of precision
may be overkill. Because the modules responsible for
performing floating point arithmetic were written
with re-usability in mind, using the VHDL “generic”
parameters, much lower resource utilization could
potentially be achieved, by reducing the mantissa
size.

The test scenario involved transmitting the particles’
positions from a computer, through a serial
connection. However, in order to fully take
advantage of the pipelined architecture, a capable
particle controller should be synthesized alongside
the force module. In a real-world large scale
numerical N-body simulation, the controller should
be able to feed the pipeline at a considerably high
rate, which might pose some challenges considering
the fact that the MAX10 FPGA chip is relatively
small in terms of resources.

Fig.4. Pipeline block diagram.

The code was written in VHDL93, is open-source
and can be found at

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

__

 31

https://github.com/ovpanait/nbody-pipeline, on git
branch PIPEF.

3. CONCLUSION

This paper presented a hardware implementation of a
pipelined gravitational force engine on an Altera
MAX10 based development board. This particular
design proved that the “Fast inverse square root”
algorithm and 64-bit floating point arithmetic blocks,
along with a pipelined architecture provide a flexible,
high-performance and highly accurate way to
compute the interactions between objects in the
context of many-body simulations.

4. REFERENCES

Bédorf, J., Gaburov, E., & Zwart, S. P. (2012). A
sparse octree gravitational N-body code that runs
entirely on the GPU processor. Journal of
Computational Physics, 231(7), 2825-2839.

Che, S., Li, J., Sheaffer, J. W., Skadron, K., & Lach,
J. (2008, June). Accelerating compute-intensive
applications with GPUs and FPGAs. In
Application Specific Processors, 2008. SASP
2008. Symposium on (pp. 101-107). IEEE.

Gothandaraman, A., Warren, G. L., Peterson, G. D.,
& Harrison, R. J. (2006, November).
Reconfigurable accelerator for quantum Monte
Carlo simulations in N-body systems. In
Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, SC (p. 177).

Hamada, T., & Iitaka, T. (2007). The chamomile
scheme: An optimized algorithm for n-body
simulations on programmable graphics
processing units. arXiv preprint astro-
ph/0703100.

Hamada, T., Benkrid, K., Nitadori, K., & Taiji, M.
(2009, July). A comparative study on ASIC,
FPGAs, GPUs and general purpose processors in
the O (N^ 2) gravitational N-body simulation.
In Adaptive Hardware and Systems, 2009. AHS
2009. NASA/ESA Conference on (pp. 447-452).
IEEE.

Harris, M. (2005). Gpgpu: General-purpose
computation on gpus. SIGGRAPH 2005 GPGPU
COURSE, 1-51.

Jetley, P., Wesolowski, L., Gioachin, F., Kalé, L. V.,
& Quinn, T. R. (2010, November). Scaling
hierarchical N-body simulations on GPU
clusters. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis
(pp. 1-11). IEEE Computer Society.

Jones, D. H., Powell, A., Bouganis, C. S., & Cheung,
P. Y. (2010, August). GPU versus FPGA for
high productivity computing. In Field
Programmable Logic and Applications (FPL),
2010 International Conference on (pp. 119-124).
IEEE.

Kim, J. S., Mangalagiri, P., Irick, K., Kandemir, M.,
Narayanan, V., Sobti, K., ... & Sun, X. (2007,
August). TANOR: A tool for accelerating N-
body simulations on reconfigurable platform.
In Field Programmable Logic and Applications,
2007. FPL 2007. International Conference
on (pp. 68-73). IEEE.

Lienhart, G., Kugel, A., & Manner, R. (2002). Using
floating-point arithmetic on FPGAs to accelerate
scientific N-body simulations. In Field-
Programmable Custom Computing Machines,
2002. Proceedings. 10th Annual IEEE
Symposium on (pp. 182-191). IEEE.

Lomont, C. (2003). Fast inverse square root. Tech-
315 nical Report, 32.

Nakasato, Naohito & Hamada, Tsuyoshi. (2007).
Astrophysical Simulations with Reconfigurable
Hardware Accelerator. 347-351. 10.1007/978-4-
431-49022-7_70.

Nyland, L., Harris, M., & Prins, J. (2007). Fast n-
body simulation with cuda. GPU gems, 3(1),
677-696.

Panait, O. (2018) Full project with source code:
https://github.com/ovpanait/nbody-pipeline,
accessed May, 2018.

Phillips, J., Areno, M., Eames, B., & Dasu, A.
(2006). An fpga-based dynamic load-balancing
processor architecture for solving n-body
problems. In Proceedings of the 10th Annual
High Performance Embedded Computing
Workshop.

Robertson, M. (2012). A brief history of invsqrt.
Department of Computer Science & Applied
Statistics.

Sano, Kentaro & Abiko, Shin & Ueno, Tomohiro.
(2017). FPGA-based Stream Computing for
High-Performance N-Body Simulation using
Floating-Point DSP Blocks.
10.1145/3120895.3120909.

Tsoi, K. H., & Luk, W. (2010, February). Axel: a
heterogeneous cluster with FPGAs and GPUs. In
Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable
gate arrays (pp. 115-124). ACM.

