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Abstract: In the present paper, we propose a low cost algorithm of a math module and the 
implementation using multifunctional registers with decoded mode inputs. The proposed math 
module algorithm will be implemented using the transition matrix method. According with 
taxonomy of the algorithms, we use the functional iteration one. It is found in specific literature 
that it can provide the lowest latency and greatest reliability. Compared with CORDIC math 
module which is based on the hardware iteration algorithm with design implemented in FPGA 
(which is more expensive and slow than a dedicate hardware), our proposed math module 
algorithm use less hardware, means the chip area is minimized, working at a high speed rate. 
There, will be proved that implementation of the digital automaton can be reduced to a 
combinational one, this will lead to the economical implementation. 

Keywords: math module algorithm, automaton execution elements, multifunctional 
registers, finite state machine. 

 

1. INTRODUCTION 

In today devices, it is well known that Processor 
Floating Point Units – FPU, which handle huge 
amount of data, are used at the maximum capacity. 
Based on this fact, we propose an optimal low cost 
method for a hardware implementation of a math 
module between two unsigned integer numbers. This 
represents a small part from the FPU’s logic. The 
mathematical computations can be found inside of 
Intel 80x86, AMD 80x86, Sun, Sparc, IBM logic 
cores architectures. 

The calculation operations of the FPU processor must 
be always done in fast and precise way to avoid 
system crash and errors with the state-of-the-art of 
the computer technology. 

The proposed algorithm is based on functional 
iterations, using only simply counting and 
decrementing operations. Based on specific literature 
(Premys et al., 2011), (Yi-Jun et al., 2011), (Ranjan 
Kumar et al., 2016), (Mihailov et al., 2011), (Morris 
et al., 2006), (Morris et al., 2005), (Skylarov et al., 
2005), it is found that for low-cost implementations 
where chip area must be minimized, the iteration 
algorithms are suitable.  

It is well known that although is used an optimal 
algorithm, the resulted synthesis can be non-optimal, 
that is why the pipelined combinational logic will be 
optimised. 

The detailed outline of the paper: Section II, details 
about the binary matrices operations; Section III, 
describes the state diagram functional representation 
based on the transition matrix method; Section IV, 
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outlines the global synthesis for the math module, 
experimental results and implementation costs; 
Section V, Further work; Section VI, final remarks. 

 

2. BINARY MATRICES OPERATIONS 

We define the transition matrix, noted with 

MxMijmatrixr tT )(_  which is build using the state 

machine diagram, where M represents the numbers 
of machine states. 

The pure binary codification for distinct operations is 
used like in (Valachi et al., 2010), (Morris et al., 
2006). In order to obtain the transition matrix 
coefficients, it’s considered the next operations: 

 Count Up, 1,1  iit , makes the transition from 

state i to state 1i  

 Count Down, 1,1  iit , makes the transition 

from state i  to state 1i  

 Hold, 1iit , the automaton remains in state i, 

makes the transition from state i to state i means 
that remains in the same state 

 Shift, 1ijt , if ji  2 , with )2( Mj   - 

Shift Left or if 





2

j
i - Shift Right 

 Reset, 11 jt , 1j , makes the transition from 

state j  to initial state 1i , ji   

 Parallel Load, 1ijt , 

},
2

,2,1,1,1{ j
j

jjji 



 , makes the 

transition from state j to state i where [x] 
represents x integer part. 

 Considering pxpijCC )( , a binary matrix, we note 

with pxpijcC )( , the complement of that matrix.  

For example: 

 









0

1

c

b
C  










1

0

c

b
C 

For the two binary matrices logic multiplication with 
the same dimension, we propose the following 
matrices 

mxnijbB )( , 
mxnijcC )( . The logic 

multiplication result noted with 

mxnijij cbCBR )(   

Ex. 









0

1

d

z
B , 










e

sx
C

1
 








 


0d

sxz
CB  

 

2.1. The two-matrices multiplication product 
algorithm 

For the two matrices multiplication, let us consider 

mxpijsS )( , pxnijlL )(  

Considering these two matrices, by multiplication of 
them, it will define the W matrix, as: 

W=S L=(cij)mxn, where  cij=



p

k
kjik ls

1

 ,   - 

represents the logic adder.  

For example: 

 









10

1

b

ax
S 


















0

11

c

uaL 













000

0

ubcba

uxcaax
W      













ubcba

uxax
 

 

3. THE STATE DIAGRAM FUNCTIONAL 
REPRESENTATION BASED ON THE 

TRANSITION MATRIX METHOD 

Considering a digital automaton that compute the 
math module for two unsigned integers numbers: 

]0:7[],0:7[ yyxx  , where x  represents the 

first operand and y  represents the second one. The 

processing results will be ]0:7[QQ  .   

The following assignments were used: 
)0(  xxNull  and )0(  yyNull . 

This algorithm can be used with good results for any 
operand size – 8, 16, 32 bits. 

The logic diagram with the iteration operation 
algorithm: 
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Algorithm description – math module yx  : 

Step 1: Load ]0:7[],0:7[ yyxx  ; 

Step 2: If x is not zero ( xNull  =0) and y  is not zero 

( yNull =0) then go to Step 3; 

Step 3: 1,1  yyxx ; 

Step 4: If x  is zero or y  is zero, go to Step 5;   

Step 5: If x  value is zero then the result is stored in 
y ;  

Step 6: If y  value is zero, then the result is stored in 

x ;  
Step 7: Read the results; 
Step 8: Stop algorithm. 

Fig. 1. Logical description of the math module 
algorithm 

3.1. Algorithm description 

After loading two operands ]0:7[xx   and 

]0:7[yy  , the algorithm will start:  if xNull and 

yNull are not active, means operands are not zero, 

the following algorithm will be executed:  x  value 
and y  values are decrementing in parallel, till one of 

them becomes zero. If the x  value becomes null, this 
means the math module result is stored in y . Also, if 

the y  value becomes null, this means the math 

module result is stored in x . 

Observation: the logical description steps from the 
multiplication algorithm - Fig.1 are not the same as 
the states from functional organizational chart - 
Fig.3, but the proposed algorithm is the same. 

 

3.2. Description of the Automaton Execution 
Elements (EEA) 

The logic circuits used are the multifunctional 
registers with decoded mode signals and 
synchronized with a clock signal. The imposed 
priority levels are: Reset has the highest priority 
level, increment/decrement has the lower priority 

level. The input command signals LDx , LDy  are 

asynchronous and has higher priority level than the 
other signals. 

xR register functionalities: asynchronous store the 

]0:7[xx  operand, load of data ]0:7[D , 

synchronous reset and decrement on the positive 

edge of the 1h . The signal 1xNull  shows that the 

content of the xR register is null. 

yR register functionalities: asynchronous store the 

]0:7[yy  operand, load of data ]0:7[D , 

synchronous reset and decrement on the positive 

edge of the 1h . The signal yNull shows if the 

content of the register is null. 

Rx Ry

X[7:0] Y[7:0]

8
8LDx LDy

DECX
DECY

8
8

OUTx
OUTy

8

RRDY

D

Vcc

SETRDYP

h1

RDYP

RDYP

OUTRRES

xNull yNull

 

Fig. 2. Automaton Execution Elements - EEA  for the math 
modulo algorithm 

The D Flip-Flop RDYP functionalities:  at the end of 
the processing, will provide the RDYP signal.  

The reset of the CBB-D is done using the hardware 
reset )0( RES  or at the reading of the result 

)0( OUTR . 

The Three State Control Buffer (TSC) BUFOUT: 
using two consecutive READ operations it allows the 
transfer of the result. 

ST Start Signal: is set only after the loading 
command of two data operands was received. On 
asynchronous hardware reset or after the final result 
was read, it is deactivated. 

Considering the states attached code 
nn yyyy }{ 012 , 

as: 

543210 101,100,011,010,001,000 ssssssyn   

The code matrix, noted with C, (3): 




















110000

001100

101010

C  
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iD  represents the i range input data in current states 

code register and is used in order to obtain the 
column vector  [2], fig.4. 

The modules algorithm description: 

 

Fig. 3. Functional organizational chart 
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
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
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= STC  )( , S represents the 

column vector, 
























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

5

1

0

.

.

.

s

s

s

S
 

From the functional organizational chart, it is 
deducted the transition matrix, (4): 


































ST

yx

yx

ST

STST

T

10000

001000

0000)0()0(0

0000)0()0(0

00010

0000

 

After a series of successive computing, is obtained 
relations (5): 

(5) 















 


ST

STyxST

TC

11000

000010

101)0()0(

 

 







































STSSS

S

STSSSyxSSTS

STC

y

y

y

543

1

54210

2

1

0

)0()0(

)(



The relations from (5) represents the SLC1 
(Combinational Logic) equations. The architecture 
for the hardwired sequencer, implemented with 
codified sequences, is shown in figure 4. The 
command signals relations are presented in equations 
(6). 

 2SDECDEC yx  

)0(3  xSOUTy
 

)0(3  xSOUTx
 

4sSETRDYP   
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SLC1

R.S

DEC

SLC2

ST

d2 d1 d0

h1
R

4E

(1 from 16)

DECx

OUTx

OUTy

SETRDYP

VDD

y2,n+1 y1,n+1 y0,n+1

9

9

(x=0) (y=0)

(x=0)

(y=0)

DECy

 

Fig. 4. Hardwired Sequencer 

The final implementation cost charts for the SLC2 
will not taken into account, because this synthesis 
remains the same in every design implementation.  

The first proposed implementation of design from 
fig.4 is like in fig.5. 

The following relations (7), are deducted from (3):  

(7)    

STSSSy

Sy

STSSSyxSSTSy






5432

11

542100 )0()0(  

The total cost of the SLC1 represents the total 
number of logic gates multiplies by the inputs. Thus, 
the implementation is calculated as in equation (8): 

(8)     
195014

)()()()( 21011



 DCDCDCSLCC  

4. MATH MODULE COMPLEX AUTOMATON 
SYNTHESIS USING MULTIFUNCTIONAL 

REGISTERS, IMPLEMENTATION COSTS AND 
EXPERIMENTAL RESULTS 

The novelty of the proposed method represents the 
separate synthesis for the digital logic system which 

generates the SR  reset signal, PL  parallel load 

signal, INC  increment signal, DEC decrement signal 
etc. 

All the logic function has the corresponding 
transition matrices TITPTR ,, .  

 Relation involved: 

 TFIFT  )()( 

Operation identification matrix is noted with )(FI . 

Priority orders: Rest - high priority, DECINC / low 
priority. 

The validation matrices for Reset, Parallel Load, 
Increment operations are noted with IIIPIR ,, , where 

  symbol means indifferent values (nor 0 logic or 1 
logic), are shown in (10). 

 



























000000

000000

000000

000000

000000

111110

IR





























 



001111

100111

110011

111001

111100

0

IP





































01

01

01

01

01

0

II
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R.S
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SLC2

d2 d1 d0

h1
R

3E

(1 from 8)

DECx

SETRDYP

VDD

y2,n+1 y1,n+1 y0,n+1

(x=0)

(y=0)

DECy

S1

S0

ST

S1

(x=0)

(y=0)

S5

ST

S2

S4

S3

OUTx

OUTy

 

Fig. 5. Hardwired sequencer 

 II is computed as: 1,0  ikii tt  for 1 ki  

- for hold state and ijt  for the rest 

(increment operation has the lowest priority 
order). 

 IP  is computed as: kt1 , for 1k  (reset 

operation has highest priority), 

1,0  ikii tt for 1 ki  

IR  is computed as: 11 kt , for 1k , 

transitions on first state. 

The specific transition matrices are shown in (11), 
(12), (13): 

TR TIR  



























000000

000000

000000

000000

000000

00000 ST

 

TP  TIP  






























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0000)0()0(0
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000100
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yx

ST



TI  TINCI )( 

 
 



































010000

001000

0000)0()0(0

0000)0()0(10

00010

00000

yx

yx

ST

STST



 

For the SR , PL , INC  relations it will be used the 
line vector [111111].  

In order to simplify the computations of the column 
vector sum, is used the following relation: 
 SFT )( . 

 STs  5S] [TR [111111]=SR 

  
 )0()0(

)0()0(

S] [TP  [11111]=  PL

12

125







yxSS

yxSSSTS 

 S]  [TI  [111111]=INC  

The transition matrices for the INC  function, (15): 

(15) TI  S =  
 








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







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
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1
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5
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yxS
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The final INC  equation:  


431205 sSTs

=S] [TI [111111]=INC

SSSSST 

 



In order to result an optimal expression, the values 
for   were chosen as preferable, equation (17): 

(17)   4310s SSSSTINC   

For the next transition sequence, there are deducted 
the following equation, (18):       
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

The code sequences matrix and it’s complement are 

noted with CC, , (19): 
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The optimal implementation, (20): 

(20)     
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The implementation of the hardwired sequencer is 
shown in figure 7. 

The implementation cost for the SLC1, (21):   

(21)    

206662
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Fig. 6. Hardwired sequencer 
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Fig. 7. Implementation of the hardwired sequencer 

 

FUTURE WORK 

This implies the low cost implementation and 
synthesis for a multifunctional digital device with 
arithmetic and logic operations.  This will simulate a 
relative huge portion from the FPU wafer. Also, we 
will study timing in digital systems because fault free 
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digital circuits may malfunction when asynchronous 
inputs have critical timing combinations. 

 

5. CONCLUSIONS 

According with taxonomy of the algorithms, we use 
the functional iteration one. It is found in specific 
literature (Mihailov et al., 2010), (Teodorescu et al., 
2010), (Valachi et al., 2010), (Morris et al., 2006), 
(Morris et al., 2005), (Skylarov et al, 2005), (Peng et 
al., 1987), (Ursaru et al., 2009), (Rodriguez et al., 
2008) that it can provide the lowest latency and 
greatest reliability. 

For the proposed algorithm, we show in our paper 
that the synthesis with multifunctional registers 
simplify the FPU digital hardware logic. Balanced 
with the math module algorithms and synthesis 
methods available in references, our iterations based 
algorithm works fine with integers numbers with 
8,16,32 bits, this means low cost implementation and 
reliability. For 64bits integer numbers, due latency, a 
variable number of digital slices should be used 
accompanying by a digital arbiter. 

Based on available papers listed in the references 
section, we proved that our research is an actual one. 

Compared with CORDIC math module (Muhammad 
et al., 2013) which is based on the hardware iteration 
algorithms with design implemented in FPGA (which 
is more expensive and slow than a dedicate 
hardware), our proposed math module algorithm use 
less hardware, means the chip area is minimized and 
works at a high speed rate for the integers numbers 
with 8, 16, 32 bits. There, was proved that 
implementation of the digital automaton can be 
reduced to a combinational one, which leads to the 
economical implementation. 

As a final conclusion, we proposed two methods for 
synthesis the digital device: first proposed method 
has a smaller implementation cost – C=19, than the 
second proposed method – C=20 and those described 
in specific literature from references. This leads to a 
small number of the logic gates and digital logic that 
is used. Low cost means the FPU logic core is much 
faster and the responses timing are short. Moreover, 
it’s about green architectures which means less 
power consumed.  
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