
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
 Article DOI: https://doi.org/10.35219/eeaci.2020.1.03

19

HARDWARE IMPLEMENTATION OF A LOW COST MATH MODULE
USING MULTIFUNCTIONAL REGISTERS WITH DECODED MODE INPUTS

Grigore Mihai TIMIS*, Alexandru VALACHI*

*Technical University “Gh.Asachi”Iasi, Faculty of Automatic Control and Computer
Engineering (e-mail: mtimis@ tuiasi.ro, avalachi@tuiasi.ro).

Abstract: In the present paper, we propose a low cost algorithm of a math module and the
implementation using multifunctional registers with decoded mode inputs. The proposed math
module algorithm will be implemented using the transition matrix method. According with
taxonomy of the algorithms, we use the functional iteration one. It is found in specific literature
that it can provide the lowest latency and greatest reliability. Compared with CORDIC math
module which is based on the hardware iteration algorithm with design implemented in FPGA
(which is more expensive and slow than a dedicate hardware), our proposed math module
algorithm use less hardware, means the chip area is minimized, working at a high speed rate.
There, will be proved that implementation of the digital automaton can be reduced to a
combinational one, this will lead to the economical implementation.

Keywords: math module algorithm, automaton execution elements, multifunctional
registers, finite state machine.

1. INTRODUCTION

In today devices, it is well known that Processor
Floating Point Units – FPU, which handle huge
amount of data, are used at the maximum capacity.
Based on this fact, we propose an optimal low cost
method for a hardware implementation of a math
module between two unsigned integer numbers. This
represents a small part from the FPU’s logic. The
mathematical computations can be found inside of
Intel 80x86, AMD 80x86, Sun, Sparc, IBM logic
cores architectures.

The calculation operations of the FPU processor must
be always done in fast and precise way to avoid
system crash and errors with the state-of-the-art of
the computer technology.

The proposed algorithm is based on functional
iterations, using only simply counting and
decrementing operations. Based on specific literature
(Premys et al., 2011), (Yi-Jun et al., 2011), (Ranjan
Kumar et al., 2016), (Mihailov et al., 2011), (Morris
et al., 2006), (Morris et al., 2005), (Skylarov et al.,
2005), it is found that for low-cost implementations
where chip area must be minimized, the iteration
algorithms are suitable.

It is well known that although is used an optimal
algorithm, the resulted synthesis can be non-optimal,
that is why the pipelined combinational logic will be
optimised.

The detailed outline of the paper: Section II, details
about the binary matrices operations; Section III,
describes the state diagram functional representation
based on the transition matrix method; Section IV,

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 20

outlines the global synthesis for the math module,
experimental results and implementation costs;
Section V, Further work; Section VI, final remarks.

2. BINARY MATRICES OPERATIONS

We define the transition matrix, noted with

MxMijmatrixr tT)(_  which is build using the state

machine diagram, where M represents the numbers
of machine states.

The pure binary codification for distinct operations is
used like in (Valachi et al., 2010), (Morris et al.,
2006). In order to obtain the transition matrix
coefficients, it’s considered the next operations:

 Count Up, 1,1  iit , makes the transition from

state i to state 1i

 Count Down, 1,1  iit , makes the transition

from state i to state 1i

 Hold, 1iit , the automaton remains in state i,

makes the transition from state i to state i means
that remains in the same state

 Shift, 1ijt , if ji  2 , with)2(Mj  -

Shift Left or if 





2

j
i - Shift Right

 Reset, 11 jt , 1j , makes the transition from

state j to initial state 1i , ji 

 Parallel Load, 1ijt ,

},
2

,2,1,1,1{ j
j

jjji 



 , makes the

transition from state j to state i where [x]
represents x integer part.

 Considering pxpijCC)( , a binary matrix, we note

with pxpijcC)( , the complement of that matrix.

For example:

 









0

1

c

b
C  










1

0

c

b
C 

For the two binary matrices logic multiplication with
the same dimension, we propose the following
matrices

mxnijbB)( ,
mxnijcC)( . The logic

multiplication result noted with

mxnijij cbCBR)(

Ex. 









0

1

d

z
B , 










e

sx
C

1








 


0d

sxz
CB

2.1. The two-matrices multiplication product
algorithm

For the two matrices multiplication, let us consider

mxpijsS)( , pxnijlL)(

Considering these two matrices, by multiplication of
them, it will define the W matrix, as:

W=S L=(cij)mxn, where cij=



p

k
kjik ls

1

 ,  -

represents the logic adder.

For example:

 









10

1

b

ax
S 


















0

11

c

uaL 













000

0

ubcba

uxcaax
W













ubcba

uxax

3. THE STATE DIAGRAM FUNCTIONAL
REPRESENTATION BASED ON THE

TRANSITION MATRIX METHOD

Considering a digital automaton that compute the
math module for two unsigned integers numbers:

]0:7[],0:7[yyxx  , where x represents the

first operand and y represents the second one. The

processing results will be]0:7[QQ  .

The following assignments were used:
)0( xxNull and)0( yyNull .

This algorithm can be used with good results for any
operand size – 8, 16, 32 bits.

The logic diagram with the iteration operation
algorithm:

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 21

Algorithm description – math module yx  :

Step 1: Load]0:7[],0:7[yyxx  ;

Step 2: If x is not zero (xNull =0) and y is not zero

(yNull =0) then go to Step 3;

Step 3: 1,1  yyxx ;

Step 4: If x is zero or y is zero, go to Step 5;

Step 5: If x value is zero then the result is stored in
y ;

Step 6: If y value is zero, then the result is stored in

x ;
Step 7: Read the results;
Step 8: Stop algorithm.

Fig. 1. Logical description of the math module
algorithm

3.1. Algorithm description

After loading two operands]0:7[xx  and

]0:7[yy  , the algorithm will start: if xNull and

yNull are not active, means operands are not zero,

the following algorithm will be executed: x value
and y values are decrementing in parallel, till one of

them becomes zero. If the x value becomes null, this
means the math module result is stored in y . Also, if

the y value becomes null, this means the math

module result is stored in x .

Observation: the logical description steps from the
multiplication algorithm - Fig.1 are not the same as
the states from functional organizational chart -
Fig.3, but the proposed algorithm is the same.

3.2. Description of the Automaton Execution
Elements (EEA)

The logic circuits used are the multifunctional
registers with decoded mode signals and
synchronized with a clock signal. The imposed
priority levels are: Reset has the highest priority
level, increment/decrement has the lower priority

level. The input command signals LDx , LDy are

asynchronous and has higher priority level than the
other signals.

xR register functionalities: asynchronous store the

]0:7[xx  operand, load of data]0:7[D ,

synchronous reset and decrement on the positive

edge of the 1h . The signal 1xNull shows that the

content of the xR register is null.

yR register functionalities: asynchronous store the

]0:7[yy  operand, load of data]0:7[D ,

synchronous reset and decrement on the positive

edge of the 1h . The signal yNull shows if the

content of the register is null.

Rx Ry

X[7:0] Y[7:0]

8
8LDx LDy

DECX
DECY

8
8

OUTx
OUTy

8

RRDY

D

Vcc

SETRDYP

h1

RDYP

RDYP

OUTRRES

xNull yNull

Fig. 2. Automaton Execution Elements - EEA for the math
modulo algorithm

The D Flip-Flop RDYP functionalities: at the end of
the processing, will provide the RDYP signal.

The reset of the CBB-D is done using the hardware
reset)0(RES or at the reading of the result

)0(OUTR .

The Three State Control Buffer (TSC) BUFOUT:
using two consecutive READ operations it allows the
transfer of the result.

ST Start Signal: is set only after the loading
command of two data operands was received. On
asynchronous hardware reset or after the final result
was read, it is deactivated.

Considering the states attached code
nn yyyy }{ 012 ,

as:

543210 101,100,011,010,001,000 ssssssyn 

The code matrix, noted with C, (3):




















110000

001100

101010

C  

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 22

iD represents the i range input data in current states

code register and is used in order to obtain the
column vector [2], fig.4.

The modules algorithm description:

Fig. 3. Functional organizational chart


































 2

1

0

12

1

0

D

D

D

y

y

y

n

= STC )(, S represents the

column vector,





























5

1

0

.

.

.

s

s

s

S

From the functional organizational chart, it is
deducted the transition matrix, (4):


































ST

yx

yx

ST

STST

T

10000

001000

0000)0()0(0

0000)0()0(0

00010

0000

 

After a series of successive computing, is obtained
relations (5):

(5)















 


ST

STyxST

TC

11000

000010

101)0()0(

 







































STSSS

S

STSSSyxSSTS

STC

y

y

y

543

1

54210

2

1

0

)0()0(

)(



The relations from (5) represents the SLC1
(Combinational Logic) equations. The architecture
for the hardwired sequencer, implemented with
codified sequences, is shown in figure 4. The
command signals relations are presented in equations
(6).

 2SDECDEC yx  

)0(3  xSOUTy

)0(3  xSOUTx

4sSETRDYP 

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 23

SLC1

R.S

DEC

SLC2

ST

d2 d1 d0

h1
R

4E

(1 from 16)

DECx

OUTx

OUTy

SETRDYP

VDD

y2,n+1 y1,n+1 y0,n+1

9

9

(x=0) (y=0)

(x=0)

(y=0)

DECy

Fig. 4. Hardwired Sequencer

The final implementation cost charts for the SLC2
will not taken into account, because this synthesis
remains the same in every design implementation.

The first proposed implementation of design from
fig.4 is like in fig.5.

The following relations (7), are deducted from (3):

(7)  

STSSSy

Sy

STSSSyxSSTSy






5432

11

542100)0()0(

The total cost of the SLC1 represents the total
number of logic gates multiplies by the inputs. Thus,
the implementation is calculated as in equation (8):

(8)
195014

)()()()(21011



 DCDCDCSLCC

4. MATH MODULE COMPLEX AUTOMATON
SYNTHESIS USING MULTIFUNCTIONAL

REGISTERS, IMPLEMENTATION COSTS AND
EXPERIMENTAL RESULTS

The novelty of the proposed method represents the
separate synthesis for the digital logic system which

generates the SR reset signal, PL parallel load

signal, INC increment signal, DEC decrement signal
etc.

All the logic function has the corresponding
transition matrices TITPTR ,, .

 Relation involved:

 TFIFT )()(

Operation identification matrix is noted with)(FI .

Priority orders: Rest - high priority, DECINC / low
priority.

The validation matrices for Reset, Parallel Load,
Increment operations are noted with IIIPIR ,, , where

 symbol means indifferent values (nor 0 logic or 1
logic), are shown in (10).

 



























000000

000000

000000

000000

000000

111110

IR





























 



001111

100111

110011

111001

111100

0

IP





































01

01

01

01

01

0

II

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 24

R.S

DEC

SLC2

d2 d1 d0

h1
R

3E

(1 from 8)

DECx

SETRDYP

VDD

y2,n+1 y1,n+1 y0,n+1

(x=0)

(y=0)

DECy

S1

S0

ST

S1

(x=0)

(y=0)

S5

ST

S2

S4

S3

OUTx

OUTy

Fig. 5. Hardwired sequencer

 II is computed as: 1,0  ikii tt for 1 ki

- for hold state and ijt for the rest

(increment operation has the lowest priority
order).

 IP is computed as: kt1 , for 1k (reset

operation has highest priority),

1,0  ikii tt for 1 ki

IR is computed as: 11 kt , for 1k ,

transitions on first state.

The specific transition matrices are shown in (11),
(12), (13):

TR TIR  



























000000

000000

000000

000000

000000

00000 ST

 

TP  TIP  































000000

000000

0000)0()0(0

000000

000100

00000

yx

ST



TI  TINCI )(

 
 



































010000

001000

0000)0()0(0

0000)0()0(10

00010

00000

yx

yx

ST

STST



For the SR , PL , INC relations it will be used the
line vector [111111].

In order to simplify the computations of the column
vector sum, is used the following relation:
 SFT )(.

 STs  5S] [TR [111111]=SR 

  
 )0()0(

)0()0(

S] [TP [11111]= PL

12

125







yxSS

yxSSSTS 

 S] [TI [111111]=INC  

The transition matrices for the INC function, (15):

(15) TI  S =  
 

































4

3

1

1

20

5

)0()0(

)0()0(

S

S

yxS

yxS

SSST

STS

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 25

The final INC equation:


431205 sSTs

=S] [TI [111111]=INC

SSSSST 

 



In order to result an optimal expression, the values
for  were chosen as preferable, equation (17):

(17) 4310s SSSSTINC 

For the next transition sequence, there are deducted
the following equation, (18):

(18)

















2

1

0

d

d

d

   STPC  

















2

1

0

d

d

d

 TPC   S 



The code sequences matrix and it’s complement are

noted with CC, , (19):



















0

1

0

d

d

d



















110000

001100

101010

 

S 

=

 
 



















0

)0()0(

)0()0(

1

21

yxS

SyxS

The optimal implementation, (20):

(20)

 
 

0

)0()0(

)0()0(

2

11

210






d

yxSd

SyxSd

The implementation of the hardwired sequencer is
shown in figure 7.

The implementation cost for the SLC1, (21):

(21)

206662

)()(

)()()(

0123

11





ddddCINCC

PLCSRCSLCC

SLC1

R.S

DEC

SLC2

ST

d2 d1 d0

h1
R

3E

(1 from 8)

DECx

OUTx

OUTy

SETRDYP

VDD

y2,n+1 y1,n+1 y0,n+1

9

9

(x=0) (y=0)

(x=0)

(y=0)

DECy

SR PL INC

test

Fig. 6. Hardwired sequencer

R.S

DEC

h2

R

3E

(1 from 8)

VDD

SR

PL

INC

3 2:0

S0
ST

S1

S5

ST

(x=0)

(y=0)

S1

S2

d3 d2 d1 d0

8
S[7:0]

S3

S4

DECx=DECy S2

OUTy S3

(x=0)

OUTx S3

)0(x
SETRDYP

S4

S1

(x=0) (y=0)

S2

Fig. 7. Implementation of the hardwired sequencer

FUTURE WORK

This implies the low cost implementation and
synthesis for a multifunctional digital device with
arithmetic and logic operations. This will simulate a
relative huge portion from the FPU wafer. Also, we
will study timing in digital systems because fault free

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 26

digital circuits may malfunction when asynchronous
inputs have critical timing combinations.

5. CONCLUSIONS

According with taxonomy of the algorithms, we use
the functional iteration one. It is found in specific
literature (Mihailov et al., 2010), (Teodorescu et al.,
2010), (Valachi et al., 2010), (Morris et al., 2006),
(Morris et al., 2005), (Skylarov et al, 2005), (Peng et
al., 1987), (Ursaru et al., 2009), (Rodriguez et al.,
2008) that it can provide the lowest latency and
greatest reliability.

For the proposed algorithm, we show in our paper
that the synthesis with multifunctional registers
simplify the FPU digital hardware logic. Balanced
with the math module algorithms and synthesis
methods available in references, our iterations based
algorithm works fine with integers numbers with
8,16,32 bits, this means low cost implementation and
reliability. For 64bits integer numbers, due latency, a
variable number of digital slices should be used
accompanying by a digital arbiter.

Based on available papers listed in the references
section, we proved that our research is an actual one.

Compared with CORDIC math module (Muhammad
et al., 2013) which is based on the hardware iteration
algorithms with design implemented in FPGA (which
is more expensive and slow than a dedicate
hardware), our proposed math module algorithm use
less hardware, means the chip area is minimized and
works at a high speed rate for the integers numbers
with 8, 16, 32 bits. There, was proved that
implementation of the digital automaton can be
reduced to a combinational one, which leads to the
economical implementation.

As a final conclusion, we proposed two methods for
synthesis the digital device: first proposed method
has a smaller implementation cost – C=19, than the
second proposed method – C=20 and those described
in specific literature from references. This leads to a
small number of the logic gates and digital logic that
is used. Low cost means the FPU logic core is much
faster and the responses timing are short. Moreover,
it’s about green architectures which means less
power consumed.

6. REFERENCES

Ranjan Kumar Barik; Itishree Samal; Manoranjan
Pradhan, “Efficient hardware realization of
signed arithmetic operation using IEN” in
Power, Communication and Information
Technology Conference (PCITC), 2015 IEEE,
15-17 Oct. 2015, DOI:
10.1109/PCITC.2015.7438171, INSPEC
Accession Number: 15885905, Date Added to
IEEE Xplore: 24 March 2016, IEEE Conference
Publications.

Muhammad Nasir Ibrahim; Chen Kean Tack;
Mariani Idroas; Siti Noormaya Bilmas; Zuraimi
Yahya, “Hardware Implementation of Math
Module Based on CORDIC Algorithm Using
FPGA”, in International Conference on Parallel
and Distributed Systems, 2013, Pages: 628 -
632, DOI: 10.1109/ICPADS.2013.112, IEEE
Conference Publications.

D. Yi-Jun, B. Zhuo, "CORDIC algorithm based on
FPGA", Journal of Shanghai University, vol. 15,
no. 4, pp 304-409, Aug 2011.

Premysl Sucha; Zdenek Hanzalek; Antonirn
Hermanek; Jan Schier, “Efficient FPGA
Implementation of Equalizer for Finite Interval
Constant Modulus Algorithm” in Industrial
Embedded Systems, 2011. IES '06. International
Symposium on Industrial Embedded Systems,
18-20 Oct. 2011, DOI:
10.1109/IES.2006.357480, INSPEC Accession
Number: 9551929, Date Added to IEEE Xplore:
07 May 2011, IEEE Conference Publications.

Dmitri Mihailov; Valery Sklyarov; Iouliia Skliarova;
Alexander Sudnitson, "Parallel FPGA-Based
Implementation of Recursive Sorting
Algorithms", in 2010 International Conference
on Reconfigurable Computing and FPGAs, Date
of Conference: 13-15 Dec. 2010, Date Added to
IEEE Xplore: 20 January 2011, INSPEC
Accession 11791744, DOI:
10.1109/ReConFig.2010.30,Publisher: IEEE.

Horia-Nicolai Teodorescu, Mircea Hulea,
"Improving time measurement precision in
embedded systems with a hybrid measuring
method", in Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS), 2010
IEEE 6th International Conference, Volumul 1,
Pag. 59-64, Editor IEEE.

Al. Valachi, M.Timis, S.Tarcau, B.Aignatoaie,
“Orders Priorities Settings Criteria for
Multifunctional Registers” in Electronics and
Electrical Engineering. Intl. Journal of
Electronics and Telecommunications Kaunas:
Technologija, 2010.

Ovidiu Ursaru, Cristian Aghion, Mihai Lucanu, Liviu
Tigaeru, “Pulse width Modulation Command
Systems Used for the Optimization of Three
Phase Inverters”, Advances in Electrical and
Computer Engineering Journal. Suceava,
Romania, 2009, pag.22-27.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 27

M.R.D. Rodrigues; J.H.P. Zurawski; J.B. Gosling,
“Hardware evaluation of mathematical
functions”, in Computers and Digital Techniques
- Volume: 128, Issue: 4, Date of Publication: 11
November 2008, Page(s): 155 – 164, Print ISSN:
0143-7062, DOI: 10.1049/ip-e:19810029,
Published in: IEE Proceedings.

Lin Yuan, Gang Qu, Villa, T., Sangiovanni-
Vincentelli,A., "An FSM Reengineering
Approach to Sequential Circuit Synthesis by
State Splitting", in IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems(Volume:27,Issue: 6), may 2008,
pages 1159-1164.

Gerald R. Morris; Viktor K. Prasanna; Richard D.
Anderson, "A Hybrid Approach for Mapping
Conjugate Gradient onto an FPGA-Augmented
Reconfigurable Supercomputer", in 14th Annual
IEEE Symposium on Field-Programmable
Custom Computing Machines, Date of
Conference: 24-26 April 2006, Date Added to
IEEE Xplore: 11 December 2006, INSPEC
Accession Number: 9274737, DOI:
10.1109/FCCM.2006.8.

G.R. Morris; V. K. Prasanna, "An FPGA-based
floating-point Jacobi iterative solver", in 8th
International Symposium on Parallel
Architectures, Algorithms and Networks
(ISPAN'05), Date of Conference: 7-9 Dec. 2005,
Date Added to IEEE Xplore: 16 January 2006,
Print ISBN: 0-7695-2509-1, INSPEC Accession
Number: 8846596, DOI:
10.1109/ISPAN.2005.18, Publisher: IEEE.

V. Skylarov; I. Skilarova; B. Pimentel, "FPGA-based
implementation and comparison of recursive and
iterative algorithms", in International
Conference on Field Programmable Logic and
Applications, 24-26 Aug. 2005, Date Added to
IEEE Xplore: 10 October 2005, INSPEC
Accession Number: 8813928, DOI:
10.1109/FPL.2005.1515728, Publisher: IEEE.

Victor Peng, Sridhar Samudrala, Moshe Gavrielov.,
Sangiovanni- Vincentelli, A., "On the
implementation of shifters, multipliers, and
dividers in VLSI floating point units", in
Computer Arithmetic (ARITH), 1987 IEEE 8th
Symposium, pages 95-102.

