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Abstract: A Metaheuristic Algorithm (MA) can be a realistic method to solve a given 

Optimal Control Problem (OCP), but the result is an open-loop solution. If the 

Metaheuristic Algorithm is integrated within the Model Predictive Control (MPC) 

structure, a closed-loop solution can be achieved. The controller works using a 

prediction technique and prediction error's minimization. On the other side, the MA 

optimizes (minimizes or maximizes) the OCP's objective function. The controller is 

faced with two optimization tasks. This paper proves through theoretical analysis and 

simulations that the prediction error's minimization is implicitly accomplished. 

Keywords: Metaheuristic Algorithm, optimal control problem, Model Predictive 

Control, Evolutionary Algorithm. 

1. INTRODUCTION 

A closed-loop control structure can be achieved 

using the Receding Horizon Control (RHC). This 

one uses a process model (MP) and organizes the 

moving of the prediction horizon. A particular case 

of the RHC is the well-known Model Predictive 

Control (MPC) that makes at each step a specific 

action: the minimization of the prediction errors. 

Many works address the MPC from different points 

of view such as: Theoretical works - (Clarke, 1994; 

Hiskens, and Gong, 2006; Zheng, 2010), tutorial 

reviews – (Christofides, 2013), or surveys of 

industrial applications – (Qin, and Badgwell, 2003; 

Yang, et al., 2014; Lopez-Francol, 2018). 

The MPC structure has a controller that can 

integrate a Metaheuristic Algorithm (MA) to solve 

a given Optimal Control Problem (OCP). On the 

one side, usually, the controller has to minimize the 

prediction errors. On the other side, the MA has to 

optimize the performance index specific to the OCP 

under consideration. The objective of this paper is 

to show that, in this case –MPC with MA- the 

minimization of the prediction error is no longer 

necessary. Section 2 outlines the proof that the 

optimization of the performance index is equivalent 

to the prediction error's minimization. A case study 

is presented in section 3, which address an OCP 

whose theoretical solution is already known. A 

version of the Evolutionary Algorithm (EA) is used 

to solve the problem in section 3.2. The result is an 

open-loop solution. That is why section 3.3 

constructs a closed-loop solution using the MPC 

structure. A quantitative comparison between these 

solutions is presented in section 4, and some 

conclusions are drawn in section 5. 

2. MINIMIZATION OF THE PREDICTION 

ERROR USING METAHEURISTIC 

ALGORITHMS 

In the sequel, let us consider t0=0 and the discrete 

moments tk=k·T will be specified simply by k. The 

control horizon is the interval [0, H]. We recall the 

following notations: 

- [k, k + h] is the prediction horizon, with h < H, 

k =0, 1,…, H-h 
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- U(k+i|k), i=0,...,h-1 is the predicted value for 

U(k+i) based on knowledge up to moment k. 

- X(k+i|k), i=1,...,h is the predicted value for X(k+i) 

based on knowledge up to moment k; 

Note that 

(1) U(k+i|k)  U(k+i),    k >0 , i=1,...,h-1, 

because U(k+i|k) is the future value of the control 

input predicted at the present moment, whereas 

U(k+i) is the future real value of the control input 

at the moment k+i, which is not known at the 

present moment. The same thing can be asserted for 

the state variables. 

Fig. 1 suggests how MPC achieves the predictive 

control technique. The control input is calculated 

through the minimization of a performance index 

I(U, k) depending on the prediction error. At 

present moment k, when the state variable is X(k), 

the performance index I(U, k) for the interval 

[k, k+h] is minimized subject to constraints through 

an optimal control sequence 

(2) < u(k|k),…, u(k + h−1|k) >. 

The first element U(k)= u(k|k) of this sequence is 

applied to the system. Then, the horizon is shifted 

by one sample, and the minimization is restarted for 

the interval [k+1, k+h+1]. The minimization is 

made within the Model Predictive Controller. 

The MA is conceived to solve a specific OCP 

having a characteristic objective function, 

J(X(k), k). The main aspect of our implementation 

is the integration of the MA under consideration 

into the Model Predictive Controller. Using the PM 

based on knowledge up to time k, the MA tries to 

optimize the objective function J(X(k), k) on the 

control horizon [k, k+h] starting from the initial 

state X(k). Therefore, the MA yields the best 

control sequence that it can find during the current 

sampling period. This sequence is, in fact, the 

predicted control sequence (pcs). 

(3) pcs=<U(k|k),…, U(N−1|k)>. 

In the sequel, it will be shown that pcs can replace 

sequence (2). In other words, the minimization of 

the performance index I(U, k) is no longer 

necessary. A special definition of the performance 

index will determine the equivalence between pcs 

and control sequence (2). 

Let us note that the optimal process of the 

considered environment is generally unknown. 

However, for this discussion, we introduce the 

optimal control sequence (ocs) and optimal states 

sequence (oss) expressed as 

 

Fig.1. Model Predictive Control structure 

(4) ocs= < U
*
(k+1|k),… , U

*
(k+h|k)>. 

(5) oss= < X
*
(k+1|k),… , X

*
(k+h|k)>. 

Because MA has a stochastic character, pcs is 

generally quasi-optimal, i.e., it is near but different 

from the ocs. 

Remark 1: Being an MA, it generates the control 

inputs randomly. While MA generates the pcs, it 

also calculates the corresponding state variables' 

values by the integration of the PM. Obviously, the 

state variables depend on the control inputs. Then, 

the pcs and the state variables' values are used 

together to calculate the objective function J. 

The predicted state sequence (pss) arranges these 

values in increasing order of time: 

(6) pss=< X(k+1|k),…, X(k+h|k)>. 

For the same reason, pss is generally quasi-optimal, 

i.e., it is near but different from the oss. If oss is 

known, it would be the ideal reference for the state 

trajectory of the dynamic system. That is why we 

may consider (only theoretically) oss as the 

reference signal for the current moment k: 

(7) R(k+i|k) = X
*
(k+i|k), i=1,..., h. 

Therefore, the prediction error along the prediction 

horizon will be 

(8) e(k+i|k) = X
*
(k+i|k)- X(k+i|k), i=1,..., h. 

Model Predictive 

Controller 

Process Model  

Process 

pss 

pcs J(pcs) 

reference 
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prediction 
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U(k) X(k) 

+ 
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In the spirit of MPC structure, we may consider the 

following performance index: 

(9) I(U, k)=



h

i

kike
1

2)|( =

 



h

i

kikXkikX

1

2* )|()|( , 

that has to be minimized 

(10) ),(min kUI
U

 

Even if the control inputs are not present in 

equation (9), the state variables are implicitly 

dependent on the control inputs (see Remark 1), and 

therefore the minimization (10) makes sense. 

A crucial aspect is that the MA produces the pcs as 

a quasi-optimal solution on the prediction horizon. 

MA, which is a stochastic algorithm, yields a single 

solution after a single execution. Therefore, it 

generates a single realization of a stochastic 

process. Despite this fact, if the convergence speed 

is good, the unique realization of the stochastic 

process is close to the optimal process. We may 

consider that the chosen metaheuristic solves the 

OCP efficiently, especially the good convergence 

speed of the algorithm has already been proven and 

tested. Hence, the pcs is very close to the ocs, and 

the pss is very close to the oss. Under these 

conditions, the pcs predicted by the MA will 

generate a pss implicitly very close to the optimal 

trajectory of the dynamic system. The value of the 

performance index (9) will be very close to zero, 

and there is no need to further minimization in (10). 

Of course, this statement is a general qualitative 

argument for the fact that the objective function 

(J)'s optimization can replace the performance 

index minimization. The analysis by simulation of 

some concrete OCPs will show the veracity of this 

argument. 

3. CASE STUDY 

In this section, we consider a specific OCP whose 

solution is theoretically known, in order to prove 

that an MPC structure can be implemented using an 

MA, avoiding the minimization of the prediction 

error. This approach is possible because of the 

equivalence, stated in the previous section, between 

the control input minimizing the prediction error 

and that which optimizes the performance index. 

In section 3.1, the theoretical solution is computed 

to serve as a comparative element, when we shall 

analyze the solution given by the MA or the MPC 

structure. 

This OCP has also been solved using an MA. 

Section 3.2 describes an Evolutionary Algorithm 

(EA) finding another solution that is very close to 

the theoretical one. The two solutions, one optimal 

and the other quasi-optimal are unfortunately open-

loop solutions. For a real implementation, only 

closed-loop solutions can be accepted. 

Section 3.3 describes an implementation of the 

MPC structure using the same EA slightly 

modified. The yielded closed-loop solution will be 

compared to the previous two solutions. Its quasi-

optimal character proves that MPC can provide a 

realistic implementation.  

3.1 Finite-horizon, discrete-time Linear-quadratic 

Problem 

This section recalls a well-known OCP whose 

solution is also very well known: finite-horizon, 

discrete-time Linear-quadratic Problem (LQP). The 

paper (Michalewicz, et al., 1992) presents an 

instance of this problem, which is recalled 

hereafter. The discrete system has the following 

state equation, where 0x is given: 

(11) kkk ubxax 1 , 1,,1 ,0  Nk  . 

The objective function and the optimum criterion 

are respectively: 

(12)  





1

0

222
N

k

kkN urxsxqJ  

(13) J*
= J

Nkuk

 min
1,,1 ,0 ,  

 

The constant values characterizing our problem's 

instance are: 

a=1, b=1, q=1, r=10, s=1, 0x =1, N=45. 

The solution of this OCP consists of the following 

sequence: 

(14) uk, k=0, 1, …, N-1, 

which meets equations (11) and (13). 

The theoretical solution states that the value of the 

performance index (12) subject to (11) is 

(15) 
2

00 xKJ star  , 

where kK  is the solution of the next Riccati 

equation. 
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Fig.2. System evolution using theoretical optimal control 

(16) 
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The optimal control values are computed using the 

equations below: 

(17) kkk xFu 
*

 

(18) 

1
2

1








k

k
k

Kbr

K
baF  

Firstly, the values Kk are found iteratively 

backwards in time using equation (16). Afterwards, 

the optimal control inputs and state variables are 

computed using equations (11), (17) and (18). 

These values are depicted in Fig. 2. Using (15), the 

performance index is 

(19) Jstar=3.702 

3.2 Quasi-optimal solution using an Evolutionary 

Algorithm 

This paper addresses OCPs for which theoretical 

solutions do not exist considering different reasons. 

We have emphasized why we have chosen to solve 

LQP. Our main objective is to test the ability of 

metaheuristic algorithms and MPC structure to 

solve difficult problems. The LQP was also solved 

using a version of the EA (Kruse, et al., 2016; 

Talbi, 2009) described in the sequel, called LQP-

EA. For LQP, every chromosome of the solutions' 

population encodes the sequence ,kU  

1,...,1,0  Nk . So, the length of the solution 

vector is h=N (control horizon). LQP-EA uses a 

direct encoding with real values and has some usual 

characteristics listed below: 

 The population of each generation has μ 

individuals; 

 The offspring population has λ individuals 

(   ); 

 NGen is the number of generations in which 

the population is evolving; 

 The selection strategy is based on Stochastic 

Universal Sampling using the rank of 

individuals, which is scaled linearly using 

selection pressure; 

 Linear Blend Alpha Crossover operator, with 

4.0 ; 

 The mutation operator uses the global variance 

adaptation of the mutation step. The adaptation 

is made according to the "1/5 success rule".  

 The replacement strategy: the offspring replace 

the λ worst parents of the generation. 

Table 1: The main parameters of LQP-EA 

λ μ NGen h s 

30 50 300 45 1.8 
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The parameters of LQP-EA are given in Table 1. 

A typical result is depicted in Fig. 3 and 4 that 

present the control input and state evolution, the red 

and blue curves, respectively. The approximation of 

the theoretical solution is very good. The 

performance index of the quasi-optimal solution is 

greater with only 2.6%: JAE=3.799 

3.3 A closed-loop solution using MPC structure 

The two solutions of the OCP under consideration 

constructed in the previous sections are useless for 

a real implementation. From this point of view, 

only the closed-loop solutions are taken into 

account. The solutions described before are 

important for our case study as comparison 

elements allowing us to evaluate at what extent the 

MPC provides close solutions.  

The Model Predictive Controller integrates the MA 

that makes the optimal prediction. In our case, it is 

about the LQP-EA slightly modified to agree with 

the closed-loop structure. This adaptation is 

described systematically in (Mînzu and Serbencu, 

2020). 

The particularity of the objective function (12), 

which has an integral term and a terminal penalty as 

well, needs a specification. Let us consider the 

current moment k when the controller has to 

calculate the current control input U(k). To do this, 

it has to calculate J for a predicted control 

sequence: 

(20) pcs=<U(k|k),…, U(N−1|k)>. 

At this moment, the controller has already "sent" 

toward the Process the following control input 

sequence: 

 

Fig.3. Comparative evolution of the control input 

 

Fig.4. Comparative evolution of the state variable 
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(21) <U(0),…, U(k-1)>. 

The calculation of J needs the concatenation of the 

two sequences. In Fig. 1, the notation J(pcs) means 

that the sequence (21) is implicitly taken into 

consideration as past control values. The EA 

calculates the value J for each solution of the 

current population. Equation (11) is used repeatedly 

to calculate the predicted states (6). Afterwards the 

objective function can be calculated using equation 

(12). Equation (13) determines simultaneously the 

value J* and the best pcs. This sequence’s first 

element, U(k)=U(k|k), is the current control input 

value that is "sent" to the Process. 

As we have already mentioned, the minimization of 

the performance index (10) is no longer necessary. 

The good convergence of the EA is a sufficient 

condition to ensure the minimization of the 

prediction error. 

4. QUANTITATIVE COMPARISON BETWEEN 

SOLUTIONS 

The theoretical solution calculated in section 3.1 

has allowed us to know the LQP's optimal solution. 

The algorithm's implementation has been made 

using the MATLAB language and system. The 

simulation's results are already presented in Fig. 2, 

3 and 4. 

Table 2: Performance index's value 

Jstar JAE εAE [%] JMPC εMPC [%] 

3.702 3.799 2.6 3.832 3.5 

Table 2 gives the values of the performance index 

for the three solutions. It also shows the relative 

errors of the two solutions against the theoretical 

one: 

(22) 
star

starAE
AE

J

JJ 
   

star

starMPC
MPC

J

JJ 
  

Although it holds 

εMPC > εAE, 

the value εMPC is quite small, meaning that the RHC 

structure still implements a quasi-optimal solution 

for the LQP. 

Fig. 5 shows the error of trajectory yielded by LGP-

EA (or MPC) as against the theoretical one. A 

greater error of the MPC structure is the price to 

pay for the closed-loop implementation. 

In our case, the degradation of the performance 

index is acceptable. Therefore one may consider 

that the MPC structure yields a quasi-optimal 

solution in closed-loop. 

 

 

Fig.5. Errors of the open and closed-loop trajectories. 
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5. CONCLUSION 

The MPC structure whose controller integrates an 

MA can implement a closed-loop solution for a 

given OCP. The analysis from section 2 and many 

simulations have proved that the optimization of the 

performance index is equivalent to the prediction 

error's minimization. Section 3 has presented a 

particular OCP that is not the main objective of this 

work. LQP has a theoretical solution that can be 

constructed and compared with the MAs' solutions. 

The case study from section 3 and also other 

implementations achieved in this framework have 

proved that our result from section 2 is realistic. 

An MA within the controller is a realistic solution 

to implement a closed-loop structure. The price to 

pay is the deterioration of the performance index to 

some extent. 

The OCP solution works in a degraded mode but 

still could have a quasi-optimal character. The 

designer of the control system must decide through 

off-line simulations whether the degraded mode is 

acceptable for a real implementation.  
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