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Abstract: In this paper we present new algorithms for counting minimum cost bounded 

degree subtrees in connected graphs in which the 2-vertex-connected (biconnected) 

components have small sizes. The 2-vertex-connected components and the cut vertices 

can be organized into a block-cut vertex tree which is also a tree decomposition with 

small width of the graph. We present a dynamic programming algorithm which is very 

efficient on this particular tree decomposition and we also discuss methods of solving 

the problem given an arbitrary tree decomposition with small width. Among some of 

the most important results is an algorithm which can efficiently compute the number of 

subtrees of a (small) graph corresponding to each possible degree sequence. 
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1. INTRODUCTION 

Bounded-degree subgraphs of a given base graph are 

important structures which arise in a wide variety of 

scenarios, like network design (Amini et al., 2009), 

security or parallel processing (Dekker et al., 2012). 

In this paper we consider a special class of bounded-

degree subgraphs, namely bounded-degree subtrees. 

We present new algorithms for counting minimum 

cost bounded degree subtrees in connected graphs 

where the 2-vertex-connected (biconnected) 

components have small sizes. The 2-vertex-

connected components and the cut vertices of any 

connected graph can be organized into a tree 

structure called a block-cut vertex tree (Andreica, 

2006), (Pirzada, 2012). The block-cut vertex tree has 

two types of nodes, one type corresponding to cut 

vertices and another type corresponding to the 2-

vertex-connected components. This tree is also a 

small-width tree decomposition (Kintali and 

Munteanu, 2012) of the graph (the width of the 

decomposition depends on the size of the largest 2-

vertex-connected component). By employing a 

dynamic programming algorithm on this special tree 

decomposition we can efficiently find the minimum 

cost of a degree-bounded subtree of the graph, as 

well as the number of such minimum cost subtrees. 

The time complexity of the obtained algorithm is of 

the form O(f(K,D)∙N+M), where K is the maximum 

size of a 2-vertex-connected component, D is the 

maximum allowed degree, N is the number of 

vertices of the graph and M is the number of edges od 

the graph. Thus, when K and D are bounded by 

constants, the algorithm can be considered to have a 

linear time complexity. We should mention that, in 

theory, a solution with a time complexity of this form 

can be immediately derived from (Arnborg and 

Proskurowski, 1989) (because the problem can be 

expressed in extended monadic second-order logic). 

However, the f(K,D) factor is difficult to estimate in 

this case and may be prohibitively high for a practical 

implementation. In this paper we will analyze the 

f(K,D) factor carefully and will focus on obtaining 

solutions where this factor is as good as possible. 
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The rest of this paper is structured as follows. We 

define the problem in more details in Section 2. 

Then, in Section 3, we present a dynamic 

programming algorithm which computes the 

minimum cost of a bounded-degree subtree and the 

number of such minimum cost subtrees given an 

arbitrary tree decomposition with small width of the 

graph. In Section 4 we show how we can use the 

special structure of the block-cut vertex tree in order 

to obtain an improved dynamic programming 

solution. This improved solution will also be based 

on counting the number of minimum cost bounded-

degree subtrees of each biconnected component 

having every possible degree sequence. An initial 

solution which enumerates all the possible subtrees is 

given in Section 5 and much more efficient solutions 

are given in Sections 6 and 7. In Section 8 we present 

experimental results for the block-cut vertex tree-

based dynamic programming algorithm which uses 

the algorithms from Sections 5, 6 and 7. In Section 9 

we discuss some alternative algorithms to those 

presented in Sections 5, 6 and 7. In Section 10 we 

discuss related work and in Section 11 we conclude. 

2. PROBLEM DEFINITION 

We consider an undirected graph G with N vertices 

and M edges. Each edge (i,j) has an associated cost 

c(i,j) (which may be positive, zero, or negative). A 

subtree of G consists of a subset of vertices V of G 

and a subset of edges E of G such that |E|=|V|-1, 

each endpoint of an edge from E is part of V and the 

edges from E form no cycles. Thus, the subtree is 

uniquely defined by the pair (V,E). The cost of a 

subtree is equal to the sum of the costs of the edges 

from the set E. The degree of a vertex v of the subtree 

is equal to the number of edges from E incident to it. 

In this paper we are interested in subtrees for which 

the maximum degree of any node in the subtree is at 

most equal to an upper limit D. We will call such 

subtrees D-degree-bounded subtrees. We want to 

compute the minimum cost of a D-degree-bounded 

subtree as well as the number of such minimum cost 

subtrees. 

3. USING DYNAMIC PROGRAMMING ON AN 

ARBITRARY TREE DECOMPOSITION OF THE 

GRAPH 

If the graph G has small treewidth (Kintali and 

Munteanu, 2012) and a tree decomposition of G can 

be computed (or is given), then we can use dynamic 

programming techniques in order to efficiently count 

the number of minimum cost D-degree-bounded 

subtrees of G. Each node X of the tree decomposition 

has an associated subset v(X) of nv(X) vertices of G: 

v(X,1), v(X,2), …, v(X,nv(X)). The main properties of 

a tree decomposition are as follows: 

- for every edge (i,j) of G we must have at least 

one node X of the tree decomposition such that both i 

and j belong to the subset v(X) 

- if vertex i belongs to both v(X) and v(Y) then i 

belongs to the subsets of all the nodes Z located on 

the unique path from X to Y in the tree decomposition 

Any tree decomposition can be easily transformed 

into a nice tree decomposition (Kintali and 

Munteanu, 2012) consisting of three types of nodes 

(besides the leaves): 

- Introduce node: A node X is an Introduce Node 

if it has a single child Y, nv(X)=nv(Y)+1 and there 

exists an index j (1≤j≤nv(X)) such that v(X,i)=v(Y,i) 

for 1≤i≤j-1 and v(X,i+1)=v(Y,i) for j≤i≤nv(Y). Thus, 

node X introduces the vertex v(X,j). 

- Forget node: A node X is a Forget Node if it has 

a single child Y, nv(X)=nv(Y)-1 and there exists an 

index j (1≤j≤nv(Y)) such that v(X,i)=v(Y,i) for 1≤i≤j-

1 and for j+1≤i≤nv(X). Thus, node X forgets the 

vertex v(Y,j). 

- Join node: A node X is a Join node if it has 

exactly two children Y and Z such that 

nv(X)=nv(Y)=nv(Z) and the subsets v(X), v(Y) and 

v(Z) are identical (although we may have the vertices 

in different orders in the three nodes). 

We will use the nice tree decomposition for our 

dynamic programming algorithm instead of the 

original tree decomposition, because the description 

of the algorithm is simplified this way. 

For each node X of the tree decomposition we will 

define by GI[X] the subgraph induced by the vertices 

from v(X) and the edges between them and by GS[X] 

the subgraph induced by the vertices from v(X) and 

all of its descendants in the tree decomposition, and 

the edges between these vertices. 

For each node X of the tree decomposition we will 

compute a table T(X) containing two values (cmin 

and cnt) for each possible state S. A state S is defined 

as a pair (GP(S), DS(S)), where: 

- GP(S) is a partition of GI[X] into an arbitrary 

number (zero or more) of vertex-disjoint D-degree-

bounded subforests: GPS(S,1), GPS(S,2), …, 

GPS(S,|GP(S)|) (with some vertices of GI[X] 

possibly left out of any of the |GP(S)| subforests), 

and 

- DS(S) is a degree sequence: DS(S,1), DS(S,2), 

…, DS(S,nv(X)) such that 0≤DS(S,i)≤D. 

Each subforest GPS(S,i) consists of a subset of 

vertices VGPS(S,i) of v(X) and a subset of edges 

EGPS(S,i), such that |EGPS(S,i)|≤|VGPS(S,i)|-1, all 

the endpoints of the edges from EGPS(S,i) are part of 
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VGPS(S,i) and the edges from EGPS(S,i) form no 

cycles (1≤i≤|GP(S)|). Moreover, as stated, the 

intersection of any two subsets VGPS(S,i) and 

VGPS(S,j) is void (1≤i,j≤|GP(S)|) and some vertices 

of v(X) may be left out of any subset VGPS(S,i) 

(1≤i≤|GP(S)|). If a vertex v(X,j) does not belong to 

any subset VGPS(S,i) (1≤i≤|GP(S)|) then we must 

have DS(S,j)=0. 

A state S for a node X defines a possible intersection 

of a D-degree-bounded subtree ST of GS[X] with 

GI[X]. The subforests GPS(S,i) contain the actual 

vertices and edges of the intersection. If a subforest 

contains multiple connected components (subtrees) 

this means that the vertices of the subforest were 

connected by vertices contained by descendants of 

the node X. 

The degree sequence DS(S) contains the degrees of 

all the vertices of v(X) in ST (DS(S,i) is the degree of 

v(X,i)). Note that the degree of a vertex v(X,i) 

depends both on its subforest neighbors in GI[X] and 

on its ST subtree neighbors in GS[X]\GI[X] 

(1≤i≤nv(X)). T(X,S).cmin will contain the minimum 

cost among all the D-degree-bounded subtrees ST of 

GS[X] corresponding to the state S (intersection and 

degree sequence) and T(X,S).cnt will contain the 

number of such minimum cost subtrees ST. If no 

subtree corresponds to a given state S then we will 

implicitly assume that T(X,S).cmin=+  and that 

T(X,S).cnt=0. In terms of implementation we can use 

a hash table for T(X), storing information only for 

those states S for which T(X,S).cmin<+  and 

T(X,S).cnt>0. Then, if a state S’ is not found in T(X) 

we will assume that T(X,S’).cmin=+  and 

T(X,S’).cnt=0. 

We will now show how to compute the tables T(X) 

for each node X of the tree decomposition. If X is a 

leaf node then we will simply generate all the 

possible partitions of GI[X] into any number of D-

degree-bounded subtrees (including the possibility of 

leaving out some vertices of v(X)). For each such 

partition GP(S) we will have DS(S,i)=the degree of 

v(X,i) in its subtree (or 0, if v(X,i) was left out of any 

subtree) (1≤i≤nv(X)). Note that in this case we will 

have T(X,S).cmin = the sum of the edges costs in all 

the subtrees of the partition and T(X,S).cnt=1. A very 

simple method for generating all the partitions is to 

first select which vertices are left out and then decide 

which edges are kept among the edges connecting 

vertices which are not left out. Once the subset of 

vertices and edges is selected, we only need to verify 

that the connected components of the selected edges 

are D-degree-bounded subtrees. 

If X is an Introduce node in the tree decomposition 

then we will proceed as follows. Let Y be the only 

child of X and let v(X,j) be the introduced vertex. Let 

e(X,j) be the set of edges having v(X,j) as an endpoint 

in GI[X]. We will consider every state S from T(Y) 

(such that T(Y,S).cnt>0) and every subset se(X,j) of at 

most D edges from e(X,j) (including the empty 

subset), such that if the edge (v(X,i),v(Y,k)) is part of 

se(X,j) then we must have DS(S,k)≤D-1 and v(Y,k) 

must belong to at least one subforest of GP(S) (i.e. it 

must not have been left out). Moreover, any two 

vertices v(Y,a) and v(Y,b) for which the edges 

(v(X,j),v(Y,a)) and (v(X,j),v(Y,b)) are part of se(X,j) 

must belong to different subforests in GP(S). 

All the subforests of GP(S) which are connected by 

edges from se(X,j) are merged into a single subforest 

(which will also include v(X,j)), thus obtaining a new 

partition GP(S’) corresponding to a state S’ for the 

node X (the subforests of GP(S) which are not 

connected by an edge to v(X,j) are copied as they are 

into GP(S’)). We will obtain DS(S’) from DS(S) by 

inserting on position j DS(S’,j)=|se(X,j)|. Then, for 

every vertex v(X,k) such that the edge (v(X,j),v(X,k)) 

is part of se(X,j) we will increment DS(S’,k) by 1. If 

|se(X,j)|=0 then GP(S’) will be obtained from GP(S) 

by adding a new subforest containing the single node 

v(X,j). Let Cmin=T(Y,S) + the sum of the costs of the 

edges from se(X,j) and Cnt=T(Y,S).cnt. If 

Cmin<T(X,S’).cmin then we will set 

T(X,S’).cmin=Cmin and T(X,S’).cnt=Cnt; otherwise, 

if Cmin=T(X,S’).cmin then we will increment 

T(X,S’).cnt by Cnt. 

The part presented so far corresponds to the case 

when the introduced vertex is selected to be part of 

the D-degree-bounded subtree. We must also 

consider the case when the introduced vertex is left 

out. In this case we will consider every state S from 

T(Y) and we will try to extend it to a valid state S’ for 

X. We will have GP(S’)=GP(S) and DP(S’) is 

obtained from DP(S) by inserting on position j 

DP(S’,j)=0.  If T(Y,S).cmin<T(X,S’).cmin then we 

will set T(X,S’).cmin=T(Y,S).cmin and 

T(X,S’).cnt=T(Y,S).cnt; otherwise, if 

T(Y,S).cmin=T(X,S’).cmin then we will increment 

T(X,S’).cnt by T(Y,S).cnt. 

If X is a Forget node then let Y be its only child and 

let v(Y,j) be the forgotten vertex. We will consider all 

the states S of T(Y) (such that T(Y,S).cnt>0) in which: 

- v(Y,j) belongs to no subforest of GP(S) 

- v(Y,j) belongs to a subforest of GP(S) with at 

least two nodes 

For each such state S we will obtain a new state S’ as 

follows. If v(Y,j) belongs to no subforest of GP(S) 

then we will have GP(S’)=GP(S); otherwise we will 

obtain GP(S’) from GP(S) by removing the vertex 

v(Y,j) and all the edges adjacent to it from the 

subforest to which it belongs. DS(S’) will be obtained 

from DS(S) by simply removing the entry DS(S,j). 

Then, if T(Y,S).cmin<T(X,S’).cmin we will set 

T(X,S’).cmin=T(Y,S).cmin and 
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T(X,S’).cnt=T(Y,S).cnt; otherwise, if 

T(Y,S).cmin=T(X,S’).cmin then we will increment 

T(X,S’) by T(Y,S). 

If X is a Join node then let Y and Z be its two 

children. We will first reorder the vertices of v(Y) and 

v(Z) such that v(X,i)=v(Y,i)=v(Z,i) (1≤i≤nv(X)). The 

reordering will also modify the components DS(SY) 

and DS(SZ) of all the states SY of T(Y) and SZ of 

T(Z). Then we will consider every pair of states 

(SY,SZ) such that T(Y,SY).cnt>0, T(Z,SZ).cnt>0, 

GP(SX)=GP(SY) and DS(SY,i)+DS(SZ,i)-

DegP(SY,v(Y,i))≤D (for 1≤i≤nv(X)). We denoted by 

DegP(SY,v(Y,i)) the degree of the vertex v(Y,i) in the 

subforest of GP(SY) to which it belongs (i.e. the 

number of edges of the subforest which are adjacent 

to v(Y,i)). If v(Y,i) does not belong to any subforest of 

GP(SY) then DegP(SY,v(Y,i))=0. We obtain a new 

state SX with GP(SX)=GP(SY) and 

DS(SX,i)=DS(SY,i)+DS(SZ,i)-DegP(SY,v(Y,i)) (for 

1≤i≤nv(X)). Let Cmin be equal to T(Y,SY)+T(Z,SZ) 

minus the sum of the costs of the edges in all the 

subforests of GP(SY), and let Cnt be equal to 

T(Y,SY)∙T(Z,SZ). If Cmin<T(X,SX).cmin then we will 

set T(X,SX).cmin=Cmin and T(X,SX).cnt=Cnt; 

otherwise, if Cmin=T(X,SX).cmin then we will 

increment T(X,SX).cnt by Cnt. 

In order to find the minimum cost of a D-degree-

bounded subtree MinCost and the number of such 

minimum cost subtrees NumSubtrees, we will 

proceed as follows. We will initialize MinCost=0 and 

NumSubtrees=N+1 (corresponding to the empty 

subtree and the subtrees containing a single vertex). 

Then we will consider every node X whose parent is 

a Forget node. We will also consider the root node of 

the tree decomposition to belong to this category 

(because all of its vertices are forgotten after it). 

Let’s denote the set of vertices forgotten by this 

node’s parent by F (usually F contains only one 

vertex, except in the case of the root when it contains 

all of the root’s vertices). We will consider all the 

states S for which GP(S) contains exactly one 

subforest, T(X,S).cnt>0 and DS(S,i)>0 for at least 

one position i (1≤i≤nv(X)) for which v(X,i) belongs to 

F (i.e. we consider only subtrees containing at least 

one forgotten vertex). If T(X,S).cmin<MinCost we 

will set MinCost=T(X,S).cmin and 

NumSubtrees=T(X,S).cnt; otherwise, if 

T(X,S).cmin=MinCost then we will increment 

NumSubtrees by T(X,S).cnt. 

Let’s analyze the time complexity of the presented 

algorithm. Let tw be the width of the tree 

decomposition we used. The number of states 

computed for each node is of the order 

NStates=(tw+1)
2∙tw

∙D
tw+1

. An Introduce node can be 

processed in time O(2
tw

∙NStates∙CopyState(tw+1)), 

where CopyStates(u) denotes the time complexity of 

copying a state into another, where u is the maximum 

number of vertices (in its subforests and in its degree 

sequence). In this case CopyState(u) is of the order 

O(u). A leaf node and a Forget node can be 

processed in time O(Nstates∙CopyState(tw+1)). A 

Join node can be processed in time 

O((tw+1)
2∙tw

∙D
2∙(tw+1)

∙CopyState(u)). It is obvious that 

handling a Join node is more complex than the other 

types of nodes and this dominates the time 

complexity of the algorithm, which becomes 

O((tw+1)
2∙tw

∙D
2∙(tw+1)

∙CopyState(u)∙N), because the 

number of nodes of the tree decomposition is of the 

order O(N). 

Note that in our analysis we assumed that arithmetic 

operations involving the costs and the number of 

subtrees (the cmin and cnt fields of the tables) take 

constant time. Although this may be a valid 

assumption regarding the costs, note that the number 

of subtrees may be exponential in the number of 

nodes of the tree. Thus, the assumption that the fields 

cmin and cnt have constant size may be false. In this 

case we should add extra factors to the time 

complexity regarding the addition and multiplication 

of numbers with a non-constant number of bits. 

However, there are scenarios when even the cnt 

fields may be safely assumed to be constant – for 

instance, when we are not interested in the exact 

number of subtrees, but rather in the number of 

subtrees modulo a given number P. In these cases all 

the additions and multiplications involving the cnt 

fields can be performed modulo P – thus, these 

numbers will never exceed the number of bits P has. 

We will not discuss this issue in more details in the 

rest of the paper and in all the other time complexity 

analyses we will assume that arithmetic operations 

involving the cmin and cnt fields take constant time. 

4. USING DYNAMIC PROGRAMMING ON THE 

BLOCK-CUT VERTEX TREE 

The block-cut vertex tree of the graph is a tree 

decomposition of the graph obtained as follows. We 

have a node in the tree for each 2-vertex-connected 

component and a node for each cut vertex (critical 

node). Two nodes X and Y are adjacent in the tree if 

X corresponds to a 2-vertex-connected component B, 

Y corresponds to a cut vertex C, and C belongs to B 

(note that a cut vertex may belong to multiple 2-

vertex-connected components). We will choose a 

node corresponding to a cut vertex as the root of the 

tree. If the graph is 2-vertex-connected (i.e. it has no 

cut vertices) we will artificially mark one of the 

graph vertices as a cut vertex (in this case the tree 

will only have two nodes). 

Fig. 1 shows a graph with 13 vertices, where the cut 

vertices are marked with a darker background. Fig. 2 

shows its block-cut vertex tree, where one of the cut 

vertices was chosen as the root. 

For a node X corresponding to a cut vertex C we will 

have the subset of vertices v(X)={C}, i.e. nv(X)=1 
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and v(X,1)=C. For a node Y corresponding to a 2-

vertex-connected component we will have the subset 

of vertices v(Y) as the subset of vertices belonging to 

the 2-vertex-connected component. 

 

Fig.1. A graph with 13 vertices. Cut vertices (labeled 

3, 5, 6 and 9) are marked with a darker 

background. 

 

Fig.2. The block-cut vertex tree of the graph from 

Fig. 1. 

We will denote by nc(X) the number of children in 

the block-cut vertex tree of the node X. The children 

will be denoted as child(X,1), …, child(X,nc(X)). For 

a node X corresponding to a 2-vertex-connected 

component (i.e. nv(X)≥2) we will order the vertices 

in its subset as follows. v(X,1) will be the cut vertex 

C corresponding to the parent of node X. v(X,i) will 

be the cut vertex C corresponding to the child 

child(X,i-1) (for 2≤i≤nc(X)+1). The remaining 

vertices of the subset (from nc(X)+1 to nv(X)) may 

be ordered arbitrarily (they are not cut vertices and 

are only part of the subset v(X)). 

With a block-cut vertex tree it will be enough to store 

some simplified states during the dynamic 

programming algorithm. In fact, a state S for a node 

X will consist only of a degree sequence (DS(S,1), …, 

DS(S,nv(X)) (with 0≤DS(S,i)≤D for 1≤i≤nv(X)). We 

do not need the partition into subforests because the 

intersection between a subtree of the graph and a 2-

vertex-connected component is either void or 

consists of a single subtree. Moreover, in a block-cut 

vertex tree there are no Join nodes, for which the 

exact partition into subforests (and the edges of the 

subforests) was most important. 

Since by using only the degree sequence we are 

unable to distinguish between subtrees containing a 

single vertex and subtrees containing zero vertices, 

our algorithm will compute only subtrees containing 

at least two vertices (thus, if DS(S,i)=0 for a node X 

this will mean that the vertex v(X,i) is not part of the 

subtree). Subtrees with only one or with zero vertices 

will be considered separately. Apart from the 

simplified states we will compute some tables T(X,i) 

for each node X of the tree, having a similar meaning 

as before. The extra index i refers to the size of the 

degree sequence. For nodes X corresponding to 2-

vertex-connected components this index will 

decrease below nv(X) because we will perform a state 

reduction after considering each of its children and 

also before considering any of its children. 

If X is a node corresponding to a 2-vertex-connected 

component (i.e. nv(X)≥2) we will proceed as follows. 

For each possible sequence of degrees DS(1), …, 

DS(nv(X)) we will compute the minimum cost of a 

D-degree-bounded subtree fully contained in the 2-

vertex-connected component and the number of such 

minimum cost subtrees in the table T(X,nv(X)) 

(T(X,nv(X),DS).cmin and T(X,nv(X),DS).cnt). We can 

achieve this by enumerating all the D-degree-

bounded subtrees (as in Section 5) or, more 

efficiently, by using the algorithms from Sections 6 

and 7. If there are no subtrees corresponding to a 

degree sequence DS we will consider 

T(X,nv(X),DS).cmin=+  and T(X,nv(X),DS).cnt=0. 

Before proceeding further we will describe the 

reduction operation Reduce(X, A, B). This operation 

will consider all the states from T(X,A) and reduce 

them into T(X,B) (B<A). The reduction operation is 

based on the premise that the degree information 

about the nodes v(X,B+1), …, v(X,A) is no longer 

needed further. The Reduce operation can be 

implemented easily. We will consider all the states 

DS from T(X,A). For each such state DS we will 

compute the state DS’ containing only the first B 

entries of DS (i.e. DS’(i)=DS(i) for 1≤i≤B). If DS’ 
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contains at least a non-zero entry then we continue as 

follows. If T(X,A,DS).cmin<T(X,B,DS’).cmin then we 

set T(X,B,DS’).cmin = T(X,A,DS).cmin and 

T(X,B,DS’).cnt = T(X,A,DS).cnt; otherwise, if 

T(X,A,DS).cmin = T(X,B,DS’).cmin then we will 

increment T(X,B,DS’).cnt by T(X,A,DS).cnt. We will 

also have, by definition, T(X,B,DSZB).cmin=0 and 

T(X,B,DSZB).cnt=1, where DSZB is a degree 

sequence containing B zeros. 

After computing the table T(X,nv(X)) for a node X 

corresponding to a 2-vertex-connected component we 

will call Reduce(X, nv(X), nc(X)+1) (only if 

nv(X)>nc(X)). Then we will consider, in order, the 

tables T(X,j) (with j going down from nc(X)+1 to 2). 

We will consider each state DS of T(X,j) and we will 

also consider each state DS’ of T(child(X,j-1),1) such 

that DS(j)+DS’(1)≤D. We now have a new state DS’’ 

which is identical to DS, except that we remove the 

last (j
th

) entry from it. If DS’’ contains at least one 

non-zero entry then we continue as follows. Let Cmin 

be T(X,j,DS).cmin+T(child(X,j-1),1,DS’).cmin and let 

Cnt be T(X,j,DS).cnt∙T(child(X,j-1),1,DS’).cnt. If 

Cmin<T(X,j-1,DS’’).cmin then we will set T(X,j-

1,DS’’).cmin=Cmin and T(X,j-1,DS’’).cnt=Cnt; 

otherwise, if Cmin=T(X,j-1,DS’’) we will increment 

T(X,j-1,DS’’).cnt by Cnt. We will also have, by 

definition, T(X,j-1,DSZj-1).cmin=0 and T(X,j-1,DSZj-

1).cnt=1. 

Let’s assume now that X is a node corresponding to a 

cut vertex (i.e. nv(X)=1). In this case there are only 

D+1 possible states (one for each possible degree of 

the cut vertex in the subtree, from 0 to D). Note that 

since we only consider subtrees with at least two 

vertices (i.e. containing at least one edge), we will 

have T(X,1,DSZ1).cmin=0 and T(X,1,DSZ1).cnt=1 

(corresponding to an empty subtree). We will use a 

knapsack-like dynamic programming algorithm for 

computing T(X,1,DS) (1≤DS(1)≤D). 

We will use a temporary table Tmp(X) where 

Tmp(X,j,DS) contains the computed values (cmin and 

cnt) corresponding to the degree sequence DS after 

considering the first j children of X. We have 

Tmp(X,0,DSZ1).cmin=0 and Tmp(X,0,DSZ1).cnt=1 

(no other states except for DSZ1 are defined for j=0). 

For 1≤j≤nc(X) we will consider all the states DS of 

Tmp(X,j-1) (i.e. such that Tmp(X,j-1,DS).cnt>0) and 

all the states DS’ of T(child(X,j),1) (i.e. such that 

T(child(X,j),1,DS’).cnt>0), such that 

DS(1)+DS’(1)≤D. For each such combination we 

obtain a new state DS’’ with a single entry 

DS’’(1)=DS(1)+DS’(1). If DS’’(1)>0 then we 

continue as follows. Let Cmin be Tmp(X,j-

1,DS).cmin+T(child(X,j),1,DS’).cmin and let Cnt be 

Tmp(X,j-1,DS).cnt∙T(child(X,j),1,DS’).cnt. If Cmin< 

Tmp(X,j,DS’’).cmin then we will set 

Tmp(X,j,DS’’).cmin=Cmin and Tmp(X,j,DS’’).cnt= 

Cnt; otherwise, if Cmin=Tmp(X,j,DS’’) we will 

increment Tmp(X,j,DS’’).cnt by Cnt. We will have 

T(X,1,DS)=Tmp(X,nc(X),DS) for every degree 

sequence DS such that 1≤DS(1)≤D. At the end we 

will set T(X,1,DSZ1).cmin=0 and T(X,1,DSZ1).cnt=1. 

In order to find the minimum cost of a D-degree-

bounded subtree MinCost and the number of such 

minimum cost subtrees NumSubtrees, we will 

proceed as follows. We will initialize MinCost=+  

and NumSubtrees=0. Then we will consider every 

node X corresponding to a cut vertex and every state 

DS of T(X,1), such that DS≠DSZ1. If 

T(X,1,DS).cmin<MinCost then we will set 

MinCost=T(X,1,DS).cmin and NumSubtrees= 

T(X,1,DS).cnt; otherwise, if MinCost= 

T(X,1,DS).cmin then we will increment NumSubtrees 

by T(X,1,DS).cnt. 

Afterwards we will consider nodes X corresponding 

to 2-vertex-connected components. For these nodes 

we will consider several situations. First of all, 

during the call Reduce(X, nv(X), nc(X)+1), whenever 

we encounter a degree sequence DS’ containing only 

zeros, we will compute Cmin=T(X,nv(X),DS).cmin 

and Cnt=T(X,nv(X),DS).cnt. If Cmin<MinCost then 

we will set MinCost=Cmin and NumSubtrees=Cnt; 

otherwise, if Cmin=MinCost then we will increment 

NumSubtrees by Cnt. Second, while considering the 

states of the table T(X,j) (with the purpose of filling 

in the table T(X,j-1)) (2≤j≤nc(X)+1), we may reach 

states DS’’=DSZj-1. In these cases we will compute 

Cmin and Cnt as if DS’’ contained at least one non-

zero entry and we update MinCost and NumSubtrees 

(if it is the case) according to the rules mentioned 

above. 

The time complexity of the presented algorithm 

depends on the maximum size K of a 2-vertex-

connected component. There are O(min{D+1,K}
K
) 

states generated initially for each 2-vertex-connected 

component (by using one of the algorithms from the 

next three sections). We will denote the time 

complexity for computing the values associated to 

these states by TI(K,D). Then, for each cut vertex of 

the 2-vertex-connected component we traverse all the 

relevant states S and try to combine each such state 

with the O(D+1) states computed for the cut vertex. 

Because of our state reduction procedure, if the 2-

vertex-connected component contains Q≥1 cut 

vertices, handling all of them will take 

O((D+1)∙((D+1)
Q
+(D+1)

Q-1
+…+(D+1)

1
)) = O( 

(D+1)
Q+1

). The worst case situation occurs when we 

have large 2-vertex-connected components (with K 

vertices each, if possible) and as many as possible of 

these vertices are cut vertices. In order for a vertex of 

a 2-vertex-connected component to be a cut vertex in 

this scenario we need to attach it to another 2-vertex-

connected component containing K-1 other vertices. 

Thus, in order to have P cut vertices we will need to 

have at least N=K+P∙(K-1) vertices in our graph. 

Since we don’t need exact numbers we can conclude 
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that we may have O(N/K) 2-vertex-connected 

components and O(N/K) cut vertices (this means that 

only O(N/K
2
) 2-vertex-connected-components can 

have all of their vertices as cut vertices). The overall 

time complexity is 

O(N/K∙(TI(K,D)+K
2
)+N/K

2
∙(D+1)

K+1
), where 

TI(K,D) is, at best, O(min{D+1,K}
K
) (and, in the 

worst case, TI(K,D)=O(K
K
)). The O(N/K∙K

2
)= 

O(N∙K) term stands for the number of edges of the 

graph. Constructing the block-cut vertex tree takes 

O(N+M) time, which in this case is O(N∙K). 

5. ENUMERATING D-DEGREE-BOUNDED 

SUBTREES 

In this section we present a recursive algorithm 

which generates all the D-degree-bounded subtrees 

of a graph. During the execution of the algorithm we 

will maintain three types of values: 

- CT: the cost of the subtree generated so far 

- a tuple (deg1, deg2, …, degN) representing the 
degrees of the vertices 1, 2, …, N, in the 
subtree generated so far (0≤degi≤D) 

- a tuple (done1, …, doneN), where donei=0 or 
1; if donei=1 it means that the degree degi of 
the vertex i is final (i.e. it cannot be increased 
any more by the algorithm); if donei=0 the 
degree of vertex i is not final, yet. 

The generated subtrees will be considered to be 

rooted at the smallest indexed vertex which is part of 

the subtree. Moreover, we will only generate subtrees 

containing at least one edge. The N+1 zero cost 

subtrees consisting of 1 vertex or of no vertex will be 

considered separately. The main loop of the 

algorithm will consider all the vertices r of the graph 

in increasing order (1≤r≤N) and generate all the 

subtrees rooted at the vertex r. For each root r we 

initialize the three types of values as follows: 

- CT=0 

- degk=0 for 1≤k≤N 

- donek=1 for 1≤k≤r-1 and donek=0 for 
r≤k≤N 

The recursive function GenerateSubtrees described 

below will be called with the arguments r, 1, CT, 

degk (1≤k≤N) and donek (1≤k≤N). The 

GenerateSubtrees function adds new children to the 

node r in the current subtree which is being 

generated. Then the function chooses the next node 

to which children may be added (if any) and calls 

itself with a new set of arguments. 

GenerateSubtrees(r, kmin, CT, deg1, …, 

degN, done1, …, doneN): 

for k=kmin to D-degr do { 

  let S(k)=the set of all subsets of k 

vertices v(1),…,v(k) such that v(i)≠r, 

donev(i)=0 and the edge (r,v(i)) exists 

in the graph (for 1≤i≤k) 

  for each subset (v(1),…,v(k)) in S(k) 

do { 

    CT’ = CT + sum of the values 

c(r,v(i)) (for 1≤i≤k) 

    degi’=degi (for 1≤i≤N, i≠r and 

i≠v(j) for 1≤j≤k) 

    degr’=degr+k 

    degv(i)’=degv(i)+1 (1≤i≤k) 

    donei’=donei (for 1≤i≤N, i≠r) 

    doner’=1 

    let r’=the smallest index such that 

doner’=0. 

    if r does not exist then a new 

subtree was completely generated, 

having the sequence of degrees deg1’, …, 

degN’ and cost CT’ 

    else call GenerateSubtrees(r’, 0, 

deg1’, …, degN’, done1’, …, doneN’) 
  } 

} 

In order to find the minimum cost of a  D-degree-

bounded subtree and the number of such subtrees we 

will initialize (in the beginning) two variables: 

MinCost=0 and NumSubtrees=N+1, corresponding 

to the N+1 zero cost subtrees containing at most 1 

vertex. Then, in the GenerateSubtrees function, 

whenever a new subtree is completely generated, we 

need to compare CT’ to MinCost. If CT’<MinCost 

then we will set MinCost=CT’ and NumSubtrees=1; 

otherwise, if CT’=MinCost then we will increment 

NumSubtrees by 1. 

6. IMPROVED COUNTING OF MINIMUM COST 

D-DEGREE-BOUNDED SUBTREES 

In this section we will present an algorithm which, 

for each possible sequence of vertex degrees (deg1, 

…, degN), computes the minimum cost D-degree-

bounded subtree (cmin(deg1, …, degN)) as well as the 

number of such minimum cost subtrees (cnt(deg1, …, 

degN)). 

The algorithm presented in the previous section can 

be used for this purpose, because for each generated 

subtree it also has its sequence of vertex degrees. 

However, we will present a faster algorithm in this 

section which does not need to generate all the 

subtrees for this. Note that the number of different 

degree sequences can be significantly smaller than 

the number of D-degree-bounded subtrees. A rough 

approximation of the number of degree sequences is 

(D+1)
N
. However, the number of valid degree 

sequences is much smaller because the sum of the 

vertex degrees must be an even number at most equal 

to 2∙N-2. Moreover, if the sum of vertex degrees is 

2∙(G-1) (for G≥2) then we must have exactly G non-

zero entries in the degree sequence. In Section 8 we 

present experimental results regarding the number of 

D-degree-bounded subtrees of a complete graph and 

the number of degree sequences. 
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The algorithm presented in this section will actually 

compute some auxiliary values auxcmin(deg1, …, 

degN, done1, …, doneN) and auxcnt(deg1, …, degN, 

done1, …, doneN), where the donek (1≤k≤N) values 

have the same meaning as in the previous section. 

We will assume that all the *cmin values are 

initialized to +  and all the *cnt values are 

initialized to 0. 

We will use a data structure DS in which we will 

insert the tuples (deg1, …, degN, done1, …, doneN) for 

which we computed auxcmin and auxcnt values. As 

in the algorithm from the previous section we will 

consider every possible vertex r as a potential root 

for the counted subtrees. For each root r we will 

initialize the degk and donek (1≤k≤N) values as 

before. We will set auxcmin(deg1, …, degN, done1, …, 

doneN)=0 and auxcnt(deg1, …, degN, done1, …, 

doneN)=1. Then we will call the CountSubtrees 

function described below with the arguments kmin=1 

and the initialized degk and donek (1≤k≤N) values. 

CountSubtrees(kmin, deg1, …, degN, 

done1, …, doneN): 

let r=the smallest index such that 

doner=0. 

if (r does not exist) { 

  if (auxcmin(deg1,…,degN,done1,…,doneN)  

      < cmin(deg1,…,degN)) { 

    cmin(deg1,…,degN) = 

    auxcmin(deg1,…,degN,done1,…,doneN) 

    cnt(deg1,…,degN) = 

    auxcnt(deg1,…,degN,done1,…,doneN) 

  } else if 

  (auxcmin(deg1,…,degN,done1,…,doneN) = 

   cmin(deg1,…,degN)) { 

    cnt(deg1,…,degN) += 

    auxcnt(deg1,…,degN,done1,…,doneN) 

  } 

} else { 

  for k=kmin to D-degr do { 

    let S(k)=the set of all subsets of 

k vertices v(1),…,v(k) such that 

v(i)≠r, donev(i)=0 and the edge (r,v(i)) 

exists in the graph (for 1≤i≤k) 

    for each subset (v(1),…,v(k)) in 

S(k) do { 

      cmin’ =  

      auxcmin(deg1,…,degN,done1,…,doneN)   

      + sum of the values c(r,v(i))   

      (for 1≤i≤k) 

      cnt’ = 

      auxcnt(deg1,…,degN,done1,…,doneN) 

      degi’=degi (for 1≤i≤N, i≠r and 

i≠v(j) for 1≤j≤k) 

      degr’=degr+k 

      degv(i)’=degv(i)+1 (1≤i≤k) 

      donei’=donei (for 1≤i≤N, i≠r) 

      doner’=1 

      if (cmin’ < 

          auxcmin(deg1’,…,degN’, 

                  done1’,…,doneN’) { 

        if (auxcmin(deg1’,…,degN’, 

            done1’,…,doneN’)=+ ) then 

          insert (deg1’,…,degN’, 

             done1’,…,doneN’) into DS 

        auxcmin(deg1’,…,degN’, 

                done1’,…,doneN’) = cmin’ 

        auxcnt(deg1’,…,degN’, 

               done1’,…,doneN’) = cnt’ 

      } else if (cmin’ =   

              auxcmin(deg1’,…,degN’, 

                      done1’,…,doneN’) { 

        auxcnt(deg1’,…,degN’,    

               done1’,…,doneN’) += cnt’ 

    } 

  } 

} 

After considering every possible root for the counted 

subtrees the algorithm will proceed as follows. As 

long as the data structure DS is not empty we extract 

the first tuple (deg1,…,degN,done1,…,doneN) from DS 

and then call 

CountSubtrees(0,deg1,…,degN,done1,…,doneN). The 

tuples from DS are sorted according to the number of 

values equal to 1 among the done1, …, doneN values. 

Thus, the first tuple from DS will be the one 

containing the smallest number of 1 values among 

the done1, …, doneN values. Note that DS may be 

implemented in multiple ways, from a standard 

priority queue to an array of queues, each position P 

of the array representing a queue storing all the tuples 

(deg1, …, degN, done1, …, doneN) having P values 

equal to 1 among the done1, …, doneN values. 

It is easy to see that this algorithm does not need to 

generate each D-degree-bounded subtree 

independently. Instead, all the subtrees corresponding 

to the same degree sequence and with the same set of 

done1, …, doneN values are handled together (only 

the minimum cost of a subtree and the number of 

minimum cost subtrees are needed for each such 

class of subtrees – these numbers are stored in the 

auxcmin and auxcnt tables). 

In order to find the minimum cost of a D-degree-

bounded subtree and the number of such subtrees we 

will initialize, as before, MinCost=0 and 

NumSubtrees=1. Then we will consider all the tuples 

(deg1,…,degN) such that cmin(deg1,…,degN)<+ . If 

cmin(deg1,…,degN)<MinCost then we will set 

MinCost=cmin(deg1,…,degN) and 

NumSubtrees=cnt(deg1,…,degN); otherwise, if 

cmin(deg1,…,degN)=MinCost then we will add 

cnt(deg1,…,degN) to NumSubtrees. 

The total number of intermediate states (i.e. tuples 

(deg1, …, degN, done1, …, doneN)) generated by this 

algorithm is upper bounded by O((2∙(D+1))
N
). 

However, as we will see in Section 8, this number is 

significantly lower. 

7. FURTHER IMPROVEMENTS FOR COUNTING 

MINIMUM COST D-DEGREE-BOUNDED 

SUBTREES 

We can slightly improve the algorithm from the 

previous by using a different approach for computing 



THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI 

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X 

__________________________________________________________________________________________ 

27 

 

the entries of the tables cmin and cnt. We will also 

use an array of queues: Q[S] will contain states 

(deg1,…,degN) for which deg1+…+degN=S. We will 

assume that all the cmin and cnt values for all the 

possible states are initially equal to + and 0, 

respectively. When a state (deg1,…,degN) is extracted 

from a queue, we will have cnt(deg1,…,degN) equal to 

the correct value multiplied by the number of degree 

values equal to 1 (i.e. the number of leaves in the 

trees corresponding to this degree sequence). Thus, 

we will have to update the cnt(deg1,…,degN) value 

before using it, by dividing it to the number of 

leaves. Then, from each state (deg1,…,degN) we will 

be able to generate new states (deg1’,…,degN’) by 

adding a new leaf to the trees corresponding to that 

state. The algorithm consists of the function 

CountSubtreesImproved, presented below. The time 

complexity of the algorithm is O(NumStates∙N
2
), 

where NumStates is the number of different valid 

degree sequences. As discussed in the previous 

section, this number is upper bounded by (D+1)
N
, but 

the experimental results from Section 8 will show 

that it is in fact much smaller. 

CountSubtreesImproved(): 

for each edge (u,v) in the graph { 

  degi = 0 (for 1≤i≤N, i≠u and i≠v) 

  degu = degv = 1 

  cmin(deg1,…,degN) = c(u,v) 

  cnt(deg1,…,degN) = 2 

  add (deg1,…,degN) to Q[2] 

} 

for S=2 to 2∙N-2 (S even) { 

  while (Q[S] is not empty) { 

    extract (deg1,…,degN) from the front 

of Q[S] 

    let nl=the number of values i 

(1≤i≤N) such that degi=1 

    cmin(deg1,…,degN) /= nl 

    for each edge (u,v) of the graph 

such that 1≤degu≤D-1 and degv=0 { 

      degi’ = degi (for 1≤i≤N, i≠u and  

                   i≠v) 

      degu’ = degu+1 

      degv’ = 1 

      S’ = S+2 

      cmin’ = cmin(deg1,…,degN)+c(u,v) 

      cnt’ = cnt(deg1,…,degN) 

      if (cmin’<cmin(deg1’,…,degN’)) { 

        if (cmin(deg1’,…,degN’)=+) 

then add (deg1’,…,degN’) to Q[S’] 

        cmin(deg1’,…,degN’) = cmin’ 

        cnt(deg1’,…,degN’) = cnt’ 

      } else if (cmin’ = 

                 cmin(deg1’,…,degN’)) { 

        cnt(deg1’,…,degN’) += cnt’ 

    } 

  } 

} 

A problem occurs when we want to compute the 

number of subtrees modulo a given number P. In this 

case the division by the number of leaves (when 

updating the cnt values) may pose some problems. If 

we want to compute the cnt values modulo P then the 

division by the number of leaves nl needs to be 

performed by multiplying the corresponding value by 

nl
-1

 (the multiplicative inverse of nl modulo P). 

However, depending on the number P, some numbers 

nl may not have a multiplicative inverse. In such 

cases we will have to compute the cnt values exactly 

and then compute their remainder when divided by P 

after having computed all the values. 

8. EXPERIMENTAL RESULTS 

We implemented the dynamic programming solution 

for graphs with small 2-vertex-connected 

components considering all the three algorithms from 

Sections 5, 6 and 7 for computing the minimum cost 

subtrees (and their numbers) corresponding to each 

degree sequence (within each biconnected 

components). All of our tests considered D=3. 

We will first present (in Table 1) a comparison 

between the algorithms from Sections 5, 6 and 7 in 

terms of the number of generated subtrees (for the 

algorithm from Section 5), the number of degree 

sequences (for the algorithms from Sections 6 and 7) 

and the number of intermediate states for 2-vertex-

connected components which are complete subgraphs 

(for the algorithm from Section 6). 

Table 1. Variation of the number of subtrees with at 

least 2 vertices, number of distinct degree sequences 

and number of intermediate states with the number of 

vertices of a complete subgraph (K). 

K Num-
ber of 
sub-
trees 

with at 
least 2 

vertices 

Num-
ber of 

distinct 
degree 
sequen-

ces 

(D+1)K Number 
of inter-
mediate 
states 

2K∙(D+1)K 

2 1 1 16 2 64 

3 6 6 64 13 512 

4 34 28 256 68 4096 

5 240 120 1024 331 32768 

6 2205 495 4096 1577 262144 

7 25466 2002 16384 7486 2097152 

8 354956 8008 65536 35564 16777216 

9 5793264 31824 262144 169128 134217728 

 

In order to compare the algorithms from Sections 5, 6 

and 7 in terms of running time we generated graphs 

with up to 100 vertices containing as many 2-vertex-

connected components of a fixed size K as possible. 

Each 2-vertex-connected component was a complete 

subgraph with the cost of each edge generated 

randomly as an integer between -100 and 100. We 

ranged K from 5 to 9. The tests were run on an Intel 

Atom N570 1.66 GHz CPU. The algorithms were 
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implemented in C++ and the code was compiled with 

the G++ compiler, version 3.3.1. Table 2 presents the 

running times of the three algorithms for each of the 

5 values of K. 

Table 2. Running time (in seconds) of the dynamic 

programming algorithm when using the algorithms 

from Sections 5, 6 or 7 for computing the number of 

minimum cost subtrees corresponding to each 

possible degree sequence for each 2-vertex-

connected component. 

K Algorithm from 
Section 5 

Algorithm from 
Section 6 

Algorithm from 
Section 7 

5 0.01 0.01 0.01 

6 0.02 0.05 0.03 

7 0.18 0.2 0.13 

8 2.25 0.99 0.54 

9 33.89 4.95 1.92 

 

We can see that using the algorithms from Sections 6 

and 7 for computing the values associated to the 

initial states of each 2-vertex-connected component 

becomes increasingly more efficient as K increases. 

The only part of the time complexity affected by the 

usage of the algorithms from Sections 5, 6 or 7 is the 

TI(K,D) factor. 

We did not implement the dynamic programming 

algorithm which is capable of using an arbitrary tree 

decomposition, because it is obvious from the time 

complexity analysis that its running time would be 

significantly worse than the one based on the block-

cut vertex tree (if the widths of the two tree 

decompositions have close values). 

9. ALTERNATIVE SOLUTIONS FOR COUNTING 

MINIMUM COST D-DEGREE-BOUNDED 

SUBTREES 

In this section we discuss two alternative solutions 

for the problem addressed by the algorithms from 

Sections 5, 6 and 7. For the first solution we will start 

with the degree sequence corresponding to an empty 

subtree (i.e. all degrees are equal to 0). We will set 

cmin(0, …, 0)=0 and cnt(0, …, 0)=1. Then we will 

add at the back of a queue Q all the degree sequences 

corresponding to subtrees containing a single edge. 

For each edge (u,v) of the graph we will construct the 

degree sequence (deg1, …, degN), where 

degu=degv=1 and degi=0 for i≠u and i≠v. Then we 

will insert this sequence at the back of the queue Q. 

We will also maintain a hash table HT with the 

degree sequences already inserted in Q. Thus, 

whenever a degree sequence is inserted in Q it will 

also automatically be inserted in HT. As before, until 

cmin(DS) or cnt(DS) are explicitly initialized for a 

degree sequence DS, we will assume that 

cmin(DS)=+ and cnt(DS)=0. 

Then, as long as Q is not empty, we will extract from 

Q the degree sequence (deg1, …, degN) located at the 

front of the queue. We will choose any vertex u such 

that degu=1. Then we will iterate through all the 

possible subtree neighbors v of u. If the degree 

sequence corresponds to a single edge (i.e. the sum of 

the degrees from the sequence is 2) then v can be 

only one vertex: the other vertex besides u for which 

degv=1. Otherwise, v can be any of the vertices for 

which degv≥2. For each possible subtree neighbor v 

of u (with the extra condition that the edge (u,v) 

exists in the graph) we will construct the degree 

sequence (deg1’, …, degN’) such that: degi’=degi for 

i≠u and i≠v, and degi’= degi-1 for i=u or i=v. We 

will compute cmin’=cmin(deg1’, …, degN’)+c(u,v) 

and cnt’=cnt(deg1’, …, degN’). If cmin’<cmin(deg1, 

…, degN) then we will set cmin(deg1, …, degN)=cmin’ 

and cnt(deg1, …, degN)=cnt’; otherwise, if 

cmin’=cmin(deg1, …, degN) then we will add to 

cnt(deg1, …, degN) the value cnt’. 

After finalizing the computation of cmin(deg1, …, 

degN) and cnt(deg1, …, degN) we will generate new 

degree sequences by adding an extra tree edge to the 

current degree sequence. We will consider all the 

pairs of vertices (u,v), such that degu=0, 1≤degv≤D-1 

and (u,v) is an edge in the graph. For each such pair 

(u,v) we will construct the degree sequence (deg1’, 

…, degN’) such that: degi’=degi for i≠u and i≠v, and 

degi’=degi+1 for i=u or i=v. If the degree sequence 

(deg1’, …, degN’) was not yet inserted in Q (we look 

for it in the hash table HT) then we will insert the 

degree sequence (deg1’, …, degN’) at the back of the 

queue Q (and also in HT, as we explained earlier). 

This solution has a time complexity of 

O(NumStates∙N
2
), where NumStates is the number of 

different valid degree sequences (upper bounded by 

(D+1)
N
). The time complexity could be improved if 

we had a more efficient method of generating all the 

valid degree sequences. Let’s assume that we have a 

list of all the valid degree sequences (deg1, …, degN), 

in order of increasing sum of degrees (i.e. in 

increasing order of S=deg1+…+ degN), breaking ties 

arbitrarily. Then, by traversing the degree sequences 

in this order, we can compute cmin(deg1, …, degN) 

and cnt(deg1, …, degN) in O(N) time for each degree 

sequence (deg1, …, degN) (by using the method we 

just described). 

Another solution consists of computing the following 

tables: auxcmin(i,deg1,…,degi) and auxcnt(i,deg1, …, 

degi) for  all the valid degree sequences (deg1,…,degi) 

for i vertices (1≤i≤N). For i=1 we have a single valid 

degree sequence: deg1=0. We have cmin(1,0)=0 and 

cnt(1,0)=1. For 2≤i≤N we will proceed as follows. 

As before, we assume that any uninitialized entries in 

the auxcmin(i) table are equal to +  and any 
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uninitialized entries in the auxcnt(i) table are equal to 

0. We will first consider all the valid degree 

sequences (deg1, …, degi) with degi=1. We will 

iterate through all the graph neighbors j<i of the 

vertex i such that: degj≥2 or (degj=1 and the only two 

non-zero entries of the degree sequence (deg1, …, 

degi) are degj and degi). For each such neighbor j we 

will construct the degree sequence (deg1’, …, degi-1’), 

where degk’=degk for k≠j and degj’=degj-1. We set 

cmin’=auxcmin(i-1, deg1’, …, degi-1’)+c(i,j) and 

cnt’=auxcnt(i-1, deg1’, …, degi-1’). If 

cmin’<auxcmin(i, deg1, …, degi) then we will set 

auxcmin(i, deg1, …, degi)=cmin’ and auxcnt(i, deg1, 

…, degi)=cnt’; otherwise, if cmin’=auxcmin(i, deg1, 

…, degi) then we will add to auxcnt(i, deg1, …, degi) 

the value cnt’. 

Next we will consider all the valid degree sequences 

(deg1, …, degi) with 2≤degi≤D, in increasing order of 

degi (breaking ties arbitrarily). For each such degree 

sequence we will consider all the valid degree 

sequences (deg1’, …, degi’) such that degj’=0 or 

degj’=degj (for 1≤j≤i-1), degi’=1 and the degree 

sequence (deg1’’, …, degi’’) is also a valid degree 

sequence, where degj’’=degj-degj’ (for 1≤j≤i). We 

will compute cmin’=auxcmin(i, deg1’, …, 

degi’)+auxcmin(i, deg1’’, …, degi’’) and 

cnt’=auxcnt(i, deg1’, …, degi’)∙auxcnt(i, deg1’’, …, 

degi’’). If cmin’<auxcmin(i, deg1, …, degi) then we 

will set auxcmin(i, deg1, …, degi)=cmin’ and 

auxcnt(i, deg1, …, degi)=cnt’; otherwise, if 

cmin’=auxcmin(i, deg1, …, degi) then we will add to 

auxcnt(i, deg1, …, degi) the value cnt’. In order to 

avoid double-counting in this case, let’s consider that 

j is the smallest index such that degj≥1. We will set 

degj’=degj for this index j (i.e. we will not consider 

the case degj’=0, too); thus, we will have degj’’=0.  

We will also have auxcmin(i, degj=0 (1≤j≤i))=0 and 

auxcnt(i, degj=0 (1≤j≤i))=1. 

In the end we have cmin(deg1, …, degN)=auxcmin(N, 

deg1, …, degN) and cnt(deg1, …, degN)=auxcnt(N, 

deg1, …, degN) for every valid degree sequence (deg1, 

…, degN). A simple analysis shows us that the time 

complexity of this approach is upper bounded by 

O((D+1)
N
∙N+(D+1)

N
∙2

N-2
). Note that in this case we 

did not specify how to generate all the valid degree 

sequences for i vertices (1≤i≤N). We could use the 

method from the previous solution or one of the 

methods presented in Sections 6 or 7. We also did not 

include the time complexity of the generation of 

valid degree sequences into the stated upper bound. 

10. RELATED WORK 

The problem of finding a minimum cost degree 

bounded subtree in an undirected graph has been 

studied from various perspectives in the scientific 

literature. Many papers considered the problem of 

computing an optimal spanning tree (or subgraph) 

under various degree constraints. Approximation 

algorithms for finding spanning trees which violate a 

maximum degree bound by a small constant while at 

the same time having a cost at most equal to that of 

the optimal degree bounded spanning tree were 

proposed in (Goemans, 2006) and (Singh and Lau, 

2007). A more general approach regarding the 

constraints imposed on the spanning tree edges 

adjacent to each vertex was considered in 

(Zenklusen, 2012). Approximation algorithms for 

finding maximum bounded degree spanning 

subgraphs were proposed in (Feng et al., 2009). A 

branch-and-cut algorithm for finding a degree-

constrained minimum spanning tree was presented in 

(Behle et al., 2007). 

The problem of finding a minimum cost degree 

bounded subtree is similar to several other well-

studied problems. For instance, when D=2, the 

problem is equivalent to finding the path of minimum 

total length (note that this is equivalent to the longest 

path problem if we negate all the cost values). 

Algorithms based on dynamic programming on tree 

decompositions of graphs for finding optimal 

connected or degree-constrained subgraphs or vertex 

subsets were also presented in the literature. An 

algorithm for the Connected Vertex Cover problem 

was presented in (Moser, 2005). An algorithm for the 

Connected Feedback Vertex Set problem was 

described in (Misra et al., 2010). An algorithm for 

finding a minimum subgraph with minimum degree 

at least D (but not necessarily connected) was 

proposed in (Amini et al., 2009). A solution for the 

Steiner Tree problem was presented in (Chimani et 

al., 2012). A general method for developing dynamic 

programming algorithms on tree decompositions was 

presented in (Arnborg and Proskurowski, 1989) . 

However, the algorithms obtained by employing the 

proposed method are not the most efficient possible 

in terms of time complexity. 

Instead of a tree decomposition some authors used a 

branch decomposition of the graph. For instance, in 

(Sau and Thilikos, 2010), the authors present a 

branch decomposition-based dynamic programming 

algorithm for finding a connected induced D-degree-

bounded subgraph having a maximum number of 

edges (or vertices). 

Counting certain types of subgraphs of a given base 

graph is a problem which has been considered many 

types in the scientific literature (e.g. counting 

spanning trees in dense graphs (Person, 2007)). 

However, counting subgraphs obeying some cost 

optimality criterion has received less attention. 

11. CONCLUSIONS 

In this paper we presented novel efficient algorithms 

for finding the minimum cost of a degree-bounded 
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subtree of a graph and the number of such subtrees, 

when the graph has 2-vertex-connected components 

with small sizes. The algorithm uses a special tree 

decomposition of the graph, called the block-cut 

vertex tree. The proposed solution was also evaluated 

experimentally. 

We also presented a general solution which is 

capable of using any tree decomposition of the graph, 

but it is less efficient than the one based on the block-

cut vertex tree. 

Our solutions consider that the maximum degree of 

each vertex in the subtree can be at most D. The 

solutions can be modified in a straight-forward 

manner in order to have different upper bounds for 

different vertices. For instance, these bounds can be 

easily integrated in the algorithms from Sections 5, 6 

and 7. In the dynamic programming algorithms, 

when the degrees of some vertices increase (either 

because of joining states from adjacent tree nodes or 

because new vertices are introduced), we need to 

replace the verification that the new degrees do not 

exceed D by the verification that the new degrees do 

not exceed the upper bounds of the corresponding 

vertices. 

12. REFERENCES 

 Amini, O., D. Peleg, S. Perennes, I. Sau and S. 

Saurabh (2009). Degree-Constrained Subgraph 

Problems: Hardness and Approximation Results, 

Lecture Notes in Computer Science, vol. 5426, 

pp. 29-42. 

 Andreica, M. I. (2006). The Tree of Biconnected 

Components and Critical Nodes, GInfo, vol. 16 

(5), pp. 11-17. 

 Arnborg, S. and A. Proskurowski (1989). Linear 

Time Algorithms for NP-Hard Problems 

Restricted to Partial k-Trees, Discrete Applied 

Mathematics, vol. 23, pp. 11-24. 

Behle, M., M. Junger and F. Liers (2007). A Primal 

Branch-and-Cut Algorithm for the Degree-

Constrained Minimum Spanning Tree Problem, 

Lecture Notes in Computer Science, vol. 4525, 

pp 379-392. 

Chimani, M., P. Mutzel and B. Zey (2012). Improved 

Steiner Tree Algorithms for Bounded Treewidth, 

Journal of Discrete Algorithms, vol. 16, pp. 67-

78. 

Dekker, A., H. Perez-Roses, G. Pineda-Villavicencio 

and P. Watters (2012). The Maximum Degree & 

Diameter-Bounded Subgraph and its 

Applications, Journal of Mathematical 

Modelling and Algorithms, vol. 11 (3), pp. 249-

268. 

Feng, W., H. Ma, B. Zhang and H. Wang (2009). 

Approximating Bounded Degree Maximum 

Spanning Subgraphs. In: Proceedings of the 8th 

International Symposium on Operations 

Research and Its Applications, pp. 83-89. 

Goemans, M. X. (2006). Minimum Bounded Degree 

Spanning Trees. In: Proceedings of the 47th 

International Symposium on Foundations of 

Computer Science, pp. 273-282. 

Kintali, S. and S. Munteanu (2012). Computing 

Bounded Path Decompositions in Logspace, 

Electronic Colloquim on Computational 

Complexity, Report No. 126. 

Misra, N., G. Philip, V. Raman, S. Saurabh and S. 

Sikdar (2010). FPT Algorithms for Connected 

Feedback Vertex Set. In: Proceedings of the 4th 

international conference on Algorithms and 

Computation (WALCOM), pp. 269-280. 

Moser, H. (2005). Exact Algorithms for 

Generalizations of Vertex Cover, Diplomarbeit, 

Institut für Informatik, Friedrich-Schiller-

Universität Jena. 

Y. Person (2007). Counting Spanning Trees in Dense 

Graphs. Diploma Thesis, Technical University 

Munchen. 

S. Pirzada (2012). An Introduction to Graph Theory, 

Universities Press. 

Sau, I. and D. M. Thilikos (2010). Subexponential 

Parameterized Algorithms for Degree-

Constrained Subgraph Problems on Planar 

Graphs, Journal of Discrete Algorithms, vol. 8 

(3), pp. 330-338. 

Singh, M. and L. C. Lau (2007). Approximating 

Minimum Bounded Degree Spanning Trees to 

within One of Optimal. In: Proceedings of the 

39th ACM Symposium on Theory of Computing, 

pp. 661-670. 

Zenklusen, R. (2012). Matroidal Degree-Bounded 

Minimum Spanning Trees. In: Proceedings of 

the 23rd ACM-SIAM Symposium on Discrete 

Algorithms, pp. 1512-1521. 


