
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

__

This paper was recommended for publication by Adrian Filipescu

19

COUNTING MINIMUM COST BOUNDED DEGREE SUBTREES IN GRAPHS

WITH SMALL 2-VERTEX-CONNECTED COMPONENTS

Mugurel Ionuţ Andreica

Computer Science Department, Politehnica University of Bucharest,

Splaiul Independenţei 313, 060042, sector 6, Bucharest, Romania,

email: mugurel.andreica@cs.pub.ro

Abstract: In this paper we present new algorithms for counting minimum cost bounded

degree subtrees in connected graphs in which the 2-vertex-connected (biconnected)

components have small sizes. The 2-vertex-connected components and the cut vertices

can be organized into a block-cut vertex tree which is also a tree decomposition with

small width of the graph. We present a dynamic programming algorithm which is very

efficient on this particular tree decomposition and we also discuss methods of solving

the problem given an arbitrary tree decomposition with small width. Among some of

the most important results is an algorithm which can efficiently compute the number of

subtrees of a (small) graph corresponding to each possible degree sequence.

Keywords: tree decomposition, block-cut vertex tree, 2-vertex-connected components,

bounded-degree subtree.

1. INTRODUCTION

Bounded-degree subgraphs of a given base graph are

important structures which arise in a wide variety of

scenarios, like network design (Amini et al., 2009),

security or parallel processing (Dekker et al., 2012).

In this paper we consider a special class of bounded-

degree subgraphs, namely bounded-degree subtrees.

We present new algorithms for counting minimum

cost bounded degree subtrees in connected graphs

where the 2-vertex-connected (biconnected)

components have small sizes. The 2-vertex-

connected components and the cut vertices of any

connected graph can be organized into a tree

structure called a block-cut vertex tree (Andreica,

2006), (Pirzada, 2012). The block-cut vertex tree has

two types of nodes, one type corresponding to cut

vertices and another type corresponding to the 2-

vertex-connected components. This tree is also a

small-width tree decomposition (Kintali and

Munteanu, 2012) of the graph (the width of the

decomposition depends on the size of the largest 2-

vertex-connected component). By employing a

dynamic programming algorithm on this special tree

decomposition we can efficiently find the minimum

cost of a degree-bounded subtree of the graph, as

well as the number of such minimum cost subtrees.

The time complexity of the obtained algorithm is of

the form O(f(K,D)∙N+M), where K is the maximum

size of a 2-vertex-connected component, D is the

maximum allowed degree, N is the number of

vertices of the graph and M is the number of edges od

the graph. Thus, when K and D are bounded by

constants, the algorithm can be considered to have a

linear time complexity. We should mention that, in

theory, a solution with a time complexity of this form

can be immediately derived from (Arnborg and

Proskurowski, 1989) (because the problem can be

expressed in extended monadic second-order logic).

However, the f(K,D) factor is difficult to estimate in

this case and may be prohibitively high for a practical

implementation. In this paper we will analyze the

f(K,D) factor carefully and will focus on obtaining

solutions where this factor is as good as possible.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

20

The rest of this paper is structured as follows. We

define the problem in more details in Section 2.

Then, in Section 3, we present a dynamic

programming algorithm which computes the

minimum cost of a bounded-degree subtree and the

number of such minimum cost subtrees given an

arbitrary tree decomposition with small width of the

graph. In Section 4 we show how we can use the

special structure of the block-cut vertex tree in order

to obtain an improved dynamic programming

solution. This improved solution will also be based

on counting the number of minimum cost bounded-

degree subtrees of each biconnected component

having every possible degree sequence. An initial

solution which enumerates all the possible subtrees is

given in Section 5 and much more efficient solutions

are given in Sections 6 and 7. In Section 8 we present

experimental results for the block-cut vertex tree-

based dynamic programming algorithm which uses

the algorithms from Sections 5, 6 and 7. In Section 9

we discuss some alternative algorithms to those

presented in Sections 5, 6 and 7. In Section 10 we

discuss related work and in Section 11 we conclude.

2. PROBLEM DEFINITION

We consider an undirected graph G with N vertices

and M edges. Each edge (i,j) has an associated cost

c(i,j) (which may be positive, zero, or negative). A

subtree of G consists of a subset of vertices V of G

and a subset of edges E of G such that |E|=|V|-1,

each endpoint of an edge from E is part of V and the

edges from E form no cycles. Thus, the subtree is

uniquely defined by the pair (V,E). The cost of a

subtree is equal to the sum of the costs of the edges

from the set E. The degree of a vertex v of the subtree

is equal to the number of edges from E incident to it.

In this paper we are interested in subtrees for which

the maximum degree of any node in the subtree is at

most equal to an upper limit D. We will call such

subtrees D-degree-bounded subtrees. We want to

compute the minimum cost of a D-degree-bounded

subtree as well as the number of such minimum cost

subtrees.

3. USING DYNAMIC PROGRAMMING ON AN

ARBITRARY TREE DECOMPOSITION OF THE

GRAPH

If the graph G has small treewidth (Kintali and

Munteanu, 2012) and a tree decomposition of G can

be computed (or is given), then we can use dynamic

programming techniques in order to efficiently count

the number of minimum cost D-degree-bounded

subtrees of G. Each node X of the tree decomposition

has an associated subset v(X) of nv(X) vertices of G:

v(X,1), v(X,2), …, v(X,nv(X)). The main properties of

a tree decomposition are as follows:

- for every edge (i,j) of G we must have at least

one node X of the tree decomposition such that both i

and j belong to the subset v(X)

- if vertex i belongs to both v(X) and v(Y) then i

belongs to the subsets of all the nodes Z located on

the unique path from X to Y in the tree decomposition

Any tree decomposition can be easily transformed

into a nice tree decomposition (Kintali and

Munteanu, 2012) consisting of three types of nodes

(besides the leaves):

- Introduce node: A node X is an Introduce Node

if it has a single child Y, nv(X)=nv(Y)+1 and there

exists an index j (1≤j≤nv(X)) such that v(X,i)=v(Y,i)

for 1≤i≤j-1 and v(X,i+1)=v(Y,i) for j≤i≤nv(Y). Thus,

node X introduces the vertex v(X,j).

- Forget node: A node X is a Forget Node if it has

a single child Y, nv(X)=nv(Y)-1 and there exists an

index j (1≤j≤nv(Y)) such that v(X,i)=v(Y,i) for 1≤i≤j-

1 and for j+1≤i≤nv(X). Thus, node X forgets the

vertex v(Y,j).

- Join node: A node X is a Join node if it has

exactly two children Y and Z such that

nv(X)=nv(Y)=nv(Z) and the subsets v(X), v(Y) and

v(Z) are identical (although we may have the vertices

in different orders in the three nodes).

We will use the nice tree decomposition for our

dynamic programming algorithm instead of the

original tree decomposition, because the description

of the algorithm is simplified this way.

For each node X of the tree decomposition we will

define by GI[X] the subgraph induced by the vertices

from v(X) and the edges between them and by GS[X]

the subgraph induced by the vertices from v(X) and

all of its descendants in the tree decomposition, and

the edges between these vertices.

For each node X of the tree decomposition we will

compute a table T(X) containing two values (cmin

and cnt) for each possible state S. A state S is defined

as a pair (GP(S), DS(S)), where:

- GP(S) is a partition of GI[X] into an arbitrary

number (zero or more) of vertex-disjoint D-degree-

bounded subforests: GPS(S,1), GPS(S,2), …,

GPS(S,|GP(S)|) (with some vertices of GI[X]

possibly left out of any of the |GP(S)| subforests),

and

- DS(S) is a degree sequence: DS(S,1), DS(S,2),

…, DS(S,nv(X)) such that 0≤DS(S,i)≤D.

Each subforest GPS(S,i) consists of a subset of

vertices VGPS(S,i) of v(X) and a subset of edges

EGPS(S,i), such that |EGPS(S,i)|≤|VGPS(S,i)|-1, all

the endpoints of the edges from EGPS(S,i) are part of

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

21

VGPS(S,i) and the edges from EGPS(S,i) form no

cycles (1≤i≤|GP(S)|). Moreover, as stated, the

intersection of any two subsets VGPS(S,i) and

VGPS(S,j) is void (1≤i,j≤|GP(S)|) and some vertices

of v(X) may be left out of any subset VGPS(S,i)

(1≤i≤|GP(S)|). If a vertex v(X,j) does not belong to

any subset VGPS(S,i) (1≤i≤|GP(S)|) then we must

have DS(S,j)=0.

A state S for a node X defines a possible intersection

of a D-degree-bounded subtree ST of GS[X] with

GI[X]. The subforests GPS(S,i) contain the actual

vertices and edges of the intersection. If a subforest

contains multiple connected components (subtrees)

this means that the vertices of the subforest were

connected by vertices contained by descendants of

the node X.

The degree sequence DS(S) contains the degrees of

all the vertices of v(X) in ST (DS(S,i) is the degree of

v(X,i)). Note that the degree of a vertex v(X,i)

depends both on its subforest neighbors in GI[X] and

on its ST subtree neighbors in GS[X]\GI[X]

(1≤i≤nv(X)). T(X,S).cmin will contain the minimum

cost among all the D-degree-bounded subtrees ST of

GS[X] corresponding to the state S (intersection and

degree sequence) and T(X,S).cnt will contain the

number of such minimum cost subtrees ST. If no

subtree corresponds to a given state S then we will

implicitly assume that T(X,S).cmin=+ and that

T(X,S).cnt=0. In terms of implementation we can use

a hash table for T(X), storing information only for

those states S for which T(X,S).cmin<+ and

T(X,S).cnt>0. Then, if a state S’ is not found in T(X)

we will assume that T(X,S’).cmin=+ and

T(X,S’).cnt=0.

We will now show how to compute the tables T(X)

for each node X of the tree decomposition. If X is a

leaf node then we will simply generate all the

possible partitions of GI[X] into any number of D-

degree-bounded subtrees (including the possibility of

leaving out some vertices of v(X)). For each such

partition GP(S) we will have DS(S,i)=the degree of

v(X,i) in its subtree (or 0, if v(X,i) was left out of any

subtree) (1≤i≤nv(X)). Note that in this case we will

have T(X,S).cmin = the sum of the edges costs in all

the subtrees of the partition and T(X,S).cnt=1. A very

simple method for generating all the partitions is to

first select which vertices are left out and then decide

which edges are kept among the edges connecting

vertices which are not left out. Once the subset of

vertices and edges is selected, we only need to verify

that the connected components of the selected edges

are D-degree-bounded subtrees.

If X is an Introduce node in the tree decomposition

then we will proceed as follows. Let Y be the only

child of X and let v(X,j) be the introduced vertex. Let

e(X,j) be the set of edges having v(X,j) as an endpoint

in GI[X]. We will consider every state S from T(Y)

(such that T(Y,S).cnt>0) and every subset se(X,j) of at

most D edges from e(X,j) (including the empty

subset), such that if the edge (v(X,i),v(Y,k)) is part of

se(X,j) then we must have DS(S,k)≤D-1 and v(Y,k)

must belong to at least one subforest of GP(S) (i.e. it

must not have been left out). Moreover, any two

vertices v(Y,a) and v(Y,b) for which the edges

(v(X,j),v(Y,a)) and (v(X,j),v(Y,b)) are part of se(X,j)

must belong to different subforests in GP(S).

All the subforests of GP(S) which are connected by

edges from se(X,j) are merged into a single subforest

(which will also include v(X,j)), thus obtaining a new

partition GP(S’) corresponding to a state S’ for the

node X (the subforests of GP(S) which are not

connected by an edge to v(X,j) are copied as they are

into GP(S’)). We will obtain DS(S’) from DS(S) by

inserting on position j DS(S’,j)=|se(X,j)|. Then, for

every vertex v(X,k) such that the edge (v(X,j),v(X,k))

is part of se(X,j) we will increment DS(S’,k) by 1. If

|se(X,j)|=0 then GP(S’) will be obtained from GP(S)

by adding a new subforest containing the single node

v(X,j). Let Cmin=T(Y,S) + the sum of the costs of the

edges from se(X,j) and Cnt=T(Y,S).cnt. If

Cmin<T(X,S’).cmin then we will set

T(X,S’).cmin=Cmin and T(X,S’).cnt=Cnt; otherwise,

if Cmin=T(X,S’).cmin then we will increment

T(X,S’).cnt by Cnt.

The part presented so far corresponds to the case

when the introduced vertex is selected to be part of

the D-degree-bounded subtree. We must also

consider the case when the introduced vertex is left

out. In this case we will consider every state S from

T(Y) and we will try to extend it to a valid state S’ for

X. We will have GP(S’)=GP(S) and DP(S’) is

obtained from DP(S) by inserting on position j

DP(S’,j)=0. If T(Y,S).cmin<T(X,S’).cmin then we

will set T(X,S’).cmin=T(Y,S).cmin and

T(X,S’).cnt=T(Y,S).cnt; otherwise, if

T(Y,S).cmin=T(X,S’).cmin then we will increment

T(X,S’).cnt by T(Y,S).cnt.

If X is a Forget node then let Y be its only child and

let v(Y,j) be the forgotten vertex. We will consider all

the states S of T(Y) (such that T(Y,S).cnt>0) in which:

- v(Y,j) belongs to no subforest of GP(S)

- v(Y,j) belongs to a subforest of GP(S) with at

least two nodes

For each such state S we will obtain a new state S’ as

follows. If v(Y,j) belongs to no subforest of GP(S)

then we will have GP(S’)=GP(S); otherwise we will

obtain GP(S’) from GP(S) by removing the vertex

v(Y,j) and all the edges adjacent to it from the

subforest to which it belongs. DS(S’) will be obtained

from DS(S) by simply removing the entry DS(S,j).

Then, if T(Y,S).cmin<T(X,S’).cmin we will set

T(X,S’).cmin=T(Y,S).cmin and

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

22

T(X,S’).cnt=T(Y,S).cnt; otherwise, if

T(Y,S).cmin=T(X,S’).cmin then we will increment

T(X,S’) by T(Y,S).

If X is a Join node then let Y and Z be its two

children. We will first reorder the vertices of v(Y) and

v(Z) such that v(X,i)=v(Y,i)=v(Z,i) (1≤i≤nv(X)). The

reordering will also modify the components DS(SY)

and DS(SZ) of all the states SY of T(Y) and SZ of

T(Z). Then we will consider every pair of states

(SY,SZ) such that T(Y,SY).cnt>0, T(Z,SZ).cnt>0,

GP(SX)=GP(SY) and DS(SY,i)+DS(SZ,i)-

DegP(SY,v(Y,i))≤D (for 1≤i≤nv(X)). We denoted by

DegP(SY,v(Y,i)) the degree of the vertex v(Y,i) in the

subforest of GP(SY) to which it belongs (i.e. the

number of edges of the subforest which are adjacent

to v(Y,i)). If v(Y,i) does not belong to any subforest of

GP(SY) then DegP(SY,v(Y,i))=0. We obtain a new

state SX with GP(SX)=GP(SY) and

DS(SX,i)=DS(SY,i)+DS(SZ,i)-DegP(SY,v(Y,i)) (for

1≤i≤nv(X)). Let Cmin be equal to T(Y,SY)+T(Z,SZ)

minus the sum of the costs of the edges in all the

subforests of GP(SY), and let Cnt be equal to

T(Y,SY)∙T(Z,SZ). If Cmin<T(X,SX).cmin then we will

set T(X,SX).cmin=Cmin and T(X,SX).cnt=Cnt;

otherwise, if Cmin=T(X,SX).cmin then we will

increment T(X,SX).cnt by Cnt.

In order to find the minimum cost of a D-degree-

bounded subtree MinCost and the number of such

minimum cost subtrees NumSubtrees, we will

proceed as follows. We will initialize MinCost=0 and

NumSubtrees=N+1 (corresponding to the empty

subtree and the subtrees containing a single vertex).

Then we will consider every node X whose parent is

a Forget node. We will also consider the root node of

the tree decomposition to belong to this category

(because all of its vertices are forgotten after it).

Let’s denote the set of vertices forgotten by this

node’s parent by F (usually F contains only one

vertex, except in the case of the root when it contains

all of the root’s vertices). We will consider all the

states S for which GP(S) contains exactly one

subforest, T(X,S).cnt>0 and DS(S,i)>0 for at least

one position i (1≤i≤nv(X)) for which v(X,i) belongs to

F (i.e. we consider only subtrees containing at least

one forgotten vertex). If T(X,S).cmin<MinCost we

will set MinCost=T(X,S).cmin and

NumSubtrees=T(X,S).cnt; otherwise, if

T(X,S).cmin=MinCost then we will increment

NumSubtrees by T(X,S).cnt.

Let’s analyze the time complexity of the presented

algorithm. Let tw be the width of the tree

decomposition we used. The number of states

computed for each node is of the order

NStates=(tw+1)
2∙tw

∙D
tw+1

. An Introduce node can be

processed in time O(2
tw

∙NStates∙CopyState(tw+1)),

where CopyStates(u) denotes the time complexity of

copying a state into another, where u is the maximum

number of vertices (in its subforests and in its degree

sequence). In this case CopyState(u) is of the order

O(u). A leaf node and a Forget node can be

processed in time O(Nstates∙CopyState(tw+1)). A

Join node can be processed in time

O((tw+1)
2∙tw

∙D
2∙(tw+1)

∙CopyState(u)). It is obvious that

handling a Join node is more complex than the other

types of nodes and this dominates the time

complexity of the algorithm, which becomes

O((tw+1)
2∙tw

∙D
2∙(tw+1)

∙CopyState(u)∙N), because the

number of nodes of the tree decomposition is of the

order O(N).

Note that in our analysis we assumed that arithmetic

operations involving the costs and the number of

subtrees (the cmin and cnt fields of the tables) take

constant time. Although this may be a valid

assumption regarding the costs, note that the number

of subtrees may be exponential in the number of

nodes of the tree. Thus, the assumption that the fields

cmin and cnt have constant size may be false. In this

case we should add extra factors to the time

complexity regarding the addition and multiplication

of numbers with a non-constant number of bits.

However, there are scenarios when even the cnt

fields may be safely assumed to be constant – for

instance, when we are not interested in the exact

number of subtrees, but rather in the number of

subtrees modulo a given number P. In these cases all

the additions and multiplications involving the cnt

fields can be performed modulo P – thus, these

numbers will never exceed the number of bits P has.

We will not discuss this issue in more details in the

rest of the paper and in all the other time complexity

analyses we will assume that arithmetic operations

involving the cmin and cnt fields take constant time.

4. USING DYNAMIC PROGRAMMING ON THE

BLOCK-CUT VERTEX TREE

The block-cut vertex tree of the graph is a tree

decomposition of the graph obtained as follows. We

have a node in the tree for each 2-vertex-connected

component and a node for each cut vertex (critical

node). Two nodes X and Y are adjacent in the tree if

X corresponds to a 2-vertex-connected component B,

Y corresponds to a cut vertex C, and C belongs to B

(note that a cut vertex may belong to multiple 2-

vertex-connected components). We will choose a

node corresponding to a cut vertex as the root of the

tree. If the graph is 2-vertex-connected (i.e. it has no

cut vertices) we will artificially mark one of the

graph vertices as a cut vertex (in this case the tree

will only have two nodes).

Fig. 1 shows a graph with 13 vertices, where the cut

vertices are marked with a darker background. Fig. 2

shows its block-cut vertex tree, where one of the cut

vertices was chosen as the root.

For a node X corresponding to a cut vertex C we will

have the subset of vertices v(X)={C}, i.e. nv(X)=1

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

23

and v(X,1)=C. For a node Y corresponding to a 2-

vertex-connected component we will have the subset

of vertices v(Y) as the subset of vertices belonging to

the 2-vertex-connected component.

Fig.1. A graph with 13 vertices. Cut vertices (labeled

3, 5, 6 and 9) are marked with a darker

background.

Fig.2. The block-cut vertex tree of the graph from

Fig. 1.

We will denote by nc(X) the number of children in

the block-cut vertex tree of the node X. The children

will be denoted as child(X,1), …, child(X,nc(X)). For

a node X corresponding to a 2-vertex-connected

component (i.e. nv(X)≥2) we will order the vertices

in its subset as follows. v(X,1) will be the cut vertex

C corresponding to the parent of node X. v(X,i) will

be the cut vertex C corresponding to the child

child(X,i-1) (for 2≤i≤nc(X)+1). The remaining

vertices of the subset (from nc(X)+1 to nv(X)) may

be ordered arbitrarily (they are not cut vertices and

are only part of the subset v(X)).

With a block-cut vertex tree it will be enough to store

some simplified states during the dynamic

programming algorithm. In fact, a state S for a node

X will consist only of a degree sequence (DS(S,1), …,

DS(S,nv(X)) (with 0≤DS(S,i)≤D for 1≤i≤nv(X)). We

do not need the partition into subforests because the

intersection between a subtree of the graph and a 2-

vertex-connected component is either void or

consists of a single subtree. Moreover, in a block-cut

vertex tree there are no Join nodes, for which the

exact partition into subforests (and the edges of the

subforests) was most important.

Since by using only the degree sequence we are

unable to distinguish between subtrees containing a

single vertex and subtrees containing zero vertices,

our algorithm will compute only subtrees containing

at least two vertices (thus, if DS(S,i)=0 for a node X

this will mean that the vertex v(X,i) is not part of the

subtree). Subtrees with only one or with zero vertices

will be considered separately. Apart from the

simplified states we will compute some tables T(X,i)

for each node X of the tree, having a similar meaning

as before. The extra index i refers to the size of the

degree sequence. For nodes X corresponding to 2-

vertex-connected components this index will

decrease below nv(X) because we will perform a state

reduction after considering each of its children and

also before considering any of its children.

If X is a node corresponding to a 2-vertex-connected

component (i.e. nv(X)≥2) we will proceed as follows.

For each possible sequence of degrees DS(1), …,

DS(nv(X)) we will compute the minimum cost of a

D-degree-bounded subtree fully contained in the 2-

vertex-connected component and the number of such

minimum cost subtrees in the table T(X,nv(X))

(T(X,nv(X),DS).cmin and T(X,nv(X),DS).cnt). We can

achieve this by enumerating all the D-degree-

bounded subtrees (as in Section 5) or, more

efficiently, by using the algorithms from Sections 6

and 7. If there are no subtrees corresponding to a

degree sequence DS we will consider

T(X,nv(X),DS).cmin=+ and T(X,nv(X),DS).cnt=0.

Before proceeding further we will describe the

reduction operation Reduce(X, A, B). This operation

will consider all the states from T(X,A) and reduce

them into T(X,B) (B<A). The reduction operation is

based on the premise that the degree information

about the nodes v(X,B+1), …, v(X,A) is no longer

needed further. The Reduce operation can be

implemented easily. We will consider all the states

DS from T(X,A). For each such state DS we will

compute the state DS’ containing only the first B

entries of DS (i.e. DS’(i)=DS(i) for 1≤i≤B). If DS’

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

24

contains at least a non-zero entry then we continue as

follows. If T(X,A,DS).cmin<T(X,B,DS’).cmin then we

set T(X,B,DS’).cmin = T(X,A,DS).cmin and

T(X,B,DS’).cnt = T(X,A,DS).cnt; otherwise, if

T(X,A,DS).cmin = T(X,B,DS’).cmin then we will

increment T(X,B,DS’).cnt by T(X,A,DS).cnt. We will

also have, by definition, T(X,B,DSZB).cmin=0 and

T(X,B,DSZB).cnt=1, where DSZB is a degree

sequence containing B zeros.

After computing the table T(X,nv(X)) for a node X

corresponding to a 2-vertex-connected component we

will call Reduce(X, nv(X), nc(X)+1) (only if

nv(X)>nc(X)). Then we will consider, in order, the

tables T(X,j) (with j going down from nc(X)+1 to 2).

We will consider each state DS of T(X,j) and we will

also consider each state DS’ of T(child(X,j-1),1) such

that DS(j)+DS’(1)≤D. We now have a new state DS’’

which is identical to DS, except that we remove the

last (j
th

) entry from it. If DS’’ contains at least one

non-zero entry then we continue as follows. Let Cmin

be T(X,j,DS).cmin+T(child(X,j-1),1,DS’).cmin and let

Cnt be T(X,j,DS).cnt∙T(child(X,j-1),1,DS’).cnt. If

Cmin<T(X,j-1,DS’’).cmin then we will set T(X,j-

1,DS’’).cmin=Cmin and T(X,j-1,DS’’).cnt=Cnt;

otherwise, if Cmin=T(X,j-1,DS’’) we will increment

T(X,j-1,DS’’).cnt by Cnt. We will also have, by

definition, T(X,j-1,DSZj-1).cmin=0 and T(X,j-1,DSZj-

1).cnt=1.

Let’s assume now that X is a node corresponding to a

cut vertex (i.e. nv(X)=1). In this case there are only

D+1 possible states (one for each possible degree of

the cut vertex in the subtree, from 0 to D). Note that

since we only consider subtrees with at least two

vertices (i.e. containing at least one edge), we will

have T(X,1,DSZ1).cmin=0 and T(X,1,DSZ1).cnt=1

(corresponding to an empty subtree). We will use a

knapsack-like dynamic programming algorithm for

computing T(X,1,DS) (1≤DS(1)≤D).

We will use a temporary table Tmp(X) where

Tmp(X,j,DS) contains the computed values (cmin and

cnt) corresponding to the degree sequence DS after

considering the first j children of X. We have

Tmp(X,0,DSZ1).cmin=0 and Tmp(X,0,DSZ1).cnt=1

(no other states except for DSZ1 are defined for j=0).

For 1≤j≤nc(X) we will consider all the states DS of

Tmp(X,j-1) (i.e. such that Tmp(X,j-1,DS).cnt>0) and

all the states DS’ of T(child(X,j),1) (i.e. such that

T(child(X,j),1,DS’).cnt>0), such that

DS(1)+DS’(1)≤D. For each such combination we

obtain a new state DS’’ with a single entry

DS’’(1)=DS(1)+DS’(1). If DS’’(1)>0 then we

continue as follows. Let Cmin be Tmp(X,j-

1,DS).cmin+T(child(X,j),1,DS’).cmin and let Cnt be

Tmp(X,j-1,DS).cnt∙T(child(X,j),1,DS’).cnt. If Cmin<

Tmp(X,j,DS’’).cmin then we will set

Tmp(X,j,DS’’).cmin=Cmin and Tmp(X,j,DS’’).cnt=

Cnt; otherwise, if Cmin=Tmp(X,j,DS’’) we will

increment Tmp(X,j,DS’’).cnt by Cnt. We will have

T(X,1,DS)=Tmp(X,nc(X),DS) for every degree

sequence DS such that 1≤DS(1)≤D. At the end we

will set T(X,1,DSZ1).cmin=0 and T(X,1,DSZ1).cnt=1.

In order to find the minimum cost of a D-degree-

bounded subtree MinCost and the number of such

minimum cost subtrees NumSubtrees, we will

proceed as follows. We will initialize MinCost=+

and NumSubtrees=0. Then we will consider every

node X corresponding to a cut vertex and every state

DS of T(X,1), such that DS≠DSZ1. If

T(X,1,DS).cmin<MinCost then we will set

MinCost=T(X,1,DS).cmin and NumSubtrees=

T(X,1,DS).cnt; otherwise, if MinCost=

T(X,1,DS).cmin then we will increment NumSubtrees

by T(X,1,DS).cnt.

Afterwards we will consider nodes X corresponding

to 2-vertex-connected components. For these nodes

we will consider several situations. First of all,

during the call Reduce(X, nv(X), nc(X)+1), whenever

we encounter a degree sequence DS’ containing only

zeros, we will compute Cmin=T(X,nv(X),DS).cmin

and Cnt=T(X,nv(X),DS).cnt. If Cmin<MinCost then

we will set MinCost=Cmin and NumSubtrees=Cnt;

otherwise, if Cmin=MinCost then we will increment

NumSubtrees by Cnt. Second, while considering the

states of the table T(X,j) (with the purpose of filling

in the table T(X,j-1)) (2≤j≤nc(X)+1), we may reach

states DS’’=DSZj-1. In these cases we will compute

Cmin and Cnt as if DS’’ contained at least one non-

zero entry and we update MinCost and NumSubtrees

(if it is the case) according to the rules mentioned

above.

The time complexity of the presented algorithm

depends on the maximum size K of a 2-vertex-

connected component. There are O(min{D+1,K}
K
)

states generated initially for each 2-vertex-connected

component (by using one of the algorithms from the

next three sections). We will denote the time

complexity for computing the values associated to

these states by TI(K,D). Then, for each cut vertex of

the 2-vertex-connected component we traverse all the

relevant states S and try to combine each such state

with the O(D+1) states computed for the cut vertex.

Because of our state reduction procedure, if the 2-

vertex-connected component contains Q≥1 cut

vertices, handling all of them will take

O((D+1)∙((D+1)
Q
+(D+1)

Q-1
+…+(D+1)

1
)) = O(

(D+1)
Q+1

). The worst case situation occurs when we

have large 2-vertex-connected components (with K

vertices each, if possible) and as many as possible of

these vertices are cut vertices. In order for a vertex of

a 2-vertex-connected component to be a cut vertex in

this scenario we need to attach it to another 2-vertex-

connected component containing K-1 other vertices.

Thus, in order to have P cut vertices we will need to

have at least N=K+P∙(K-1) vertices in our graph.

Since we don’t need exact numbers we can conclude

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

25

that we may have O(N/K) 2-vertex-connected

components and O(N/K) cut vertices (this means that

only O(N/K
2
) 2-vertex-connected-components can

have all of their vertices as cut vertices). The overall

time complexity is

O(N/K∙(TI(K,D)+K
2
)+N/K

2
∙(D+1)

K+1
), where

TI(K,D) is, at best, O(min{D+1,K}
K
) (and, in the

worst case, TI(K,D)=O(K
K
)). The O(N/K∙K

2
)=

O(N∙K) term stands for the number of edges of the

graph. Constructing the block-cut vertex tree takes

O(N+M) time, which in this case is O(N∙K).

5. ENUMERATING D-DEGREE-BOUNDED

SUBTREES

In this section we present a recursive algorithm

which generates all the D-degree-bounded subtrees

of a graph. During the execution of the algorithm we

will maintain three types of values:

- CT: the cost of the subtree generated so far

- a tuple (deg1, deg2, …, degN) representing the
degrees of the vertices 1, 2, …, N, in the
subtree generated so far (0≤degi≤D)

- a tuple (done1, …, doneN), where donei=0 or
1; if donei=1 it means that the degree degi of
the vertex i is final (i.e. it cannot be increased
any more by the algorithm); if donei=0 the
degree of vertex i is not final, yet.

The generated subtrees will be considered to be

rooted at the smallest indexed vertex which is part of

the subtree. Moreover, we will only generate subtrees

containing at least one edge. The N+1 zero cost

subtrees consisting of 1 vertex or of no vertex will be

considered separately. The main loop of the

algorithm will consider all the vertices r of the graph

in increasing order (1≤r≤N) and generate all the

subtrees rooted at the vertex r. For each root r we

initialize the three types of values as follows:

- CT=0

- degk=0 for 1≤k≤N

- donek=1 for 1≤k≤r-1 and donek=0 for
r≤k≤N

The recursive function GenerateSubtrees described

below will be called with the arguments r, 1, CT,

degk (1≤k≤N) and donek (1≤k≤N). The

GenerateSubtrees function adds new children to the

node r in the current subtree which is being

generated. Then the function chooses the next node

to which children may be added (if any) and calls

itself with a new set of arguments.

GenerateSubtrees(r, kmin, CT, deg1, …,

degN, done1, …, doneN):

for k=kmin to D-degr do {

 let S(k)=the set of all subsets of k

vertices v(1),…,v(k) such that v(i)≠r,

donev(i)=0 and the edge (r,v(i)) exists

in the graph (for 1≤i≤k)

 for each subset (v(1),…,v(k)) in S(k)

do {

 CT’ = CT + sum of the values

c(r,v(i)) (for 1≤i≤k)

 degi’=degi (for 1≤i≤N, i≠r and

i≠v(j) for 1≤j≤k)

 degr’=degr+k

 degv(i)’=degv(i)+1 (1≤i≤k)

 donei’=donei (for 1≤i≤N, i≠r)

 doner’=1

 let r’=the smallest index such that

doner’=0.

 if r does not exist then a new

subtree was completely generated,

having the sequence of degrees deg1’, …,

degN’ and cost CT’

 else call GenerateSubtrees(r’, 0,

deg1’, …, degN’, done1’, …, doneN’)
 }

}

In order to find the minimum cost of a D-degree-

bounded subtree and the number of such subtrees we

will initialize (in the beginning) two variables:

MinCost=0 and NumSubtrees=N+1, corresponding

to the N+1 zero cost subtrees containing at most 1

vertex. Then, in the GenerateSubtrees function,

whenever a new subtree is completely generated, we

need to compare CT’ to MinCost. If CT’<MinCost

then we will set MinCost=CT’ and NumSubtrees=1;

otherwise, if CT’=MinCost then we will increment

NumSubtrees by 1.

6. IMPROVED COUNTING OF MINIMUM COST

D-DEGREE-BOUNDED SUBTREES

In this section we will present an algorithm which,

for each possible sequence of vertex degrees (deg1,

…, degN), computes the minimum cost D-degree-

bounded subtree (cmin(deg1, …, degN)) as well as the

number of such minimum cost subtrees (cnt(deg1, …,

degN)).

The algorithm presented in the previous section can

be used for this purpose, because for each generated

subtree it also has its sequence of vertex degrees.

However, we will present a faster algorithm in this

section which does not need to generate all the

subtrees for this. Note that the number of different

degree sequences can be significantly smaller than

the number of D-degree-bounded subtrees. A rough

approximation of the number of degree sequences is

(D+1)
N
. However, the number of valid degree

sequences is much smaller because the sum of the

vertex degrees must be an even number at most equal

to 2∙N-2. Moreover, if the sum of vertex degrees is

2∙(G-1) (for G≥2) then we must have exactly G non-

zero entries in the degree sequence. In Section 8 we

present experimental results regarding the number of

D-degree-bounded subtrees of a complete graph and

the number of degree sequences.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

26

The algorithm presented in this section will actually

compute some auxiliary values auxcmin(deg1, …,

degN, done1, …, doneN) and auxcnt(deg1, …, degN,

done1, …, doneN), where the donek (1≤k≤N) values

have the same meaning as in the previous section.

We will assume that all the *cmin values are

initialized to + and all the *cnt values are

initialized to 0.

We will use a data structure DS in which we will

insert the tuples (deg1, …, degN, done1, …, doneN) for

which we computed auxcmin and auxcnt values. As

in the algorithm from the previous section we will

consider every possible vertex r as a potential root

for the counted subtrees. For each root r we will

initialize the degk and donek (1≤k≤N) values as

before. We will set auxcmin(deg1, …, degN, done1, …,

doneN)=0 and auxcnt(deg1, …, degN, done1, …,

doneN)=1. Then we will call the CountSubtrees

function described below with the arguments kmin=1

and the initialized degk and donek (1≤k≤N) values.

CountSubtrees(kmin, deg1, …, degN,

done1, …, doneN):

let r=the smallest index such that

doner=0.

if (r does not exist) {

 if (auxcmin(deg1,…,degN,done1,…,doneN)

 < cmin(deg1,…,degN)) {

 cmin(deg1,…,degN) =

 auxcmin(deg1,…,degN,done1,…,doneN)

 cnt(deg1,…,degN) =

 auxcnt(deg1,…,degN,done1,…,doneN)

 } else if

 (auxcmin(deg1,…,degN,done1,…,doneN) =

 cmin(deg1,…,degN)) {

 cnt(deg1,…,degN) +=

 auxcnt(deg1,…,degN,done1,…,doneN)

 }

} else {

 for k=kmin to D-degr do {

 let S(k)=the set of all subsets of

k vertices v(1),…,v(k) such that

v(i)≠r, donev(i)=0 and the edge (r,v(i))

exists in the graph (for 1≤i≤k)

 for each subset (v(1),…,v(k)) in

S(k) do {

 cmin’ =

 auxcmin(deg1,…,degN,done1,…,doneN)

 + sum of the values c(r,v(i))

 (for 1≤i≤k)

 cnt’ =

 auxcnt(deg1,…,degN,done1,…,doneN)

 degi’=degi (for 1≤i≤N, i≠r and

i≠v(j) for 1≤j≤k)

 degr’=degr+k

 degv(i)’=degv(i)+1 (1≤i≤k)

 donei’=donei (for 1≤i≤N, i≠r)

 doner’=1

 if (cmin’ <

 auxcmin(deg1’,…,degN’,

 done1’,…,doneN’) {

 if (auxcmin(deg1’,…,degN’,

 done1’,…,doneN’)=+) then

 insert (deg1’,…,degN’,

 done1’,…,doneN’) into DS

 auxcmin(deg1’,…,degN’,

 done1’,…,doneN’) = cmin’

 auxcnt(deg1’,…,degN’,

 done1’,…,doneN’) = cnt’

 } else if (cmin’ =

 auxcmin(deg1’,…,degN’,

 done1’,…,doneN’) {

 auxcnt(deg1’,…,degN’,

 done1’,…,doneN’) += cnt’

 }

 }

}

After considering every possible root for the counted

subtrees the algorithm will proceed as follows. As

long as the data structure DS is not empty we extract

the first tuple (deg1,…,degN,done1,…,doneN) from DS

and then call

CountSubtrees(0,deg1,…,degN,done1,…,doneN). The

tuples from DS are sorted according to the number of

values equal to 1 among the done1, …, doneN values.

Thus, the first tuple from DS will be the one

containing the smallest number of 1 values among

the done1, …, doneN values. Note that DS may be

implemented in multiple ways, from a standard

priority queue to an array of queues, each position P

of the array representing a queue storing all the tuples

(deg1, …, degN, done1, …, doneN) having P values

equal to 1 among the done1, …, doneN values.

It is easy to see that this algorithm does not need to

generate each D-degree-bounded subtree

independently. Instead, all the subtrees corresponding

to the same degree sequence and with the same set of

done1, …, doneN values are handled together (only

the minimum cost of a subtree and the number of

minimum cost subtrees are needed for each such

class of subtrees – these numbers are stored in the

auxcmin and auxcnt tables).

In order to find the minimum cost of a D-degree-

bounded subtree and the number of such subtrees we

will initialize, as before, MinCost=0 and

NumSubtrees=1. Then we will consider all the tuples

(deg1,…,degN) such that cmin(deg1,…,degN)<+ . If

cmin(deg1,…,degN)<MinCost then we will set

MinCost=cmin(deg1,…,degN) and

NumSubtrees=cnt(deg1,…,degN); otherwise, if

cmin(deg1,…,degN)=MinCost then we will add

cnt(deg1,…,degN) to NumSubtrees.

The total number of intermediate states (i.e. tuples

(deg1, …, degN, done1, …, doneN)) generated by this

algorithm is upper bounded by O((2∙(D+1))
N
).

However, as we will see in Section 8, this number is

significantly lower.

7. FURTHER IMPROVEMENTS FOR COUNTING

MINIMUM COST D-DEGREE-BOUNDED

SUBTREES

We can slightly improve the algorithm from the

previous by using a different approach for computing

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

27

the entries of the tables cmin and cnt. We will also

use an array of queues: Q[S] will contain states

(deg1,…,degN) for which deg1+…+degN=S. We will

assume that all the cmin and cnt values for all the

possible states are initially equal to + and 0,

respectively. When a state (deg1,…,degN) is extracted

from a queue, we will have cnt(deg1,…,degN) equal to

the correct value multiplied by the number of degree

values equal to 1 (i.e. the number of leaves in the

trees corresponding to this degree sequence). Thus,

we will have to update the cnt(deg1,…,degN) value

before using it, by dividing it to the number of

leaves. Then, from each state (deg1,…,degN) we will

be able to generate new states (deg1’,…,degN’) by

adding a new leaf to the trees corresponding to that

state. The algorithm consists of the function

CountSubtreesImproved, presented below. The time

complexity of the algorithm is O(NumStates∙N
2
),

where NumStates is the number of different valid

degree sequences. As discussed in the previous

section, this number is upper bounded by (D+1)
N
, but

the experimental results from Section 8 will show

that it is in fact much smaller.

CountSubtreesImproved():

for each edge (u,v) in the graph {

 degi = 0 (for 1≤i≤N, i≠u and i≠v)

 degu = degv = 1

 cmin(deg1,…,degN) = c(u,v)

 cnt(deg1,…,degN) = 2

 add (deg1,…,degN) to Q[2]

}

for S=2 to 2∙N-2 (S even) {

 while (Q[S] is not empty) {

 extract (deg1,…,degN) from the front

of Q[S]

 let nl=the number of values i

(1≤i≤N) such that degi=1

 cmin(deg1,…,degN) /= nl

 for each edge (u,v) of the graph

such that 1≤degu≤D-1 and degv=0 {

 degi’ = degi (for 1≤i≤N, i≠u and

 i≠v)

 degu’ = degu+1

 degv’ = 1

 S’ = S+2

 cmin’ = cmin(deg1,…,degN)+c(u,v)

 cnt’ = cnt(deg1,…,degN)

 if (cmin’<cmin(deg1’,…,degN’)) {

 if (cmin(deg1’,…,degN’)=+)

then add (deg1’,…,degN’) to Q[S’]

 cmin(deg1’,…,degN’) = cmin’

 cnt(deg1’,…,degN’) = cnt’

 } else if (cmin’ =

 cmin(deg1’,…,degN’)) {

 cnt(deg1’,…,degN’) += cnt’

 }

 }

}

A problem occurs when we want to compute the

number of subtrees modulo a given number P. In this

case the division by the number of leaves (when

updating the cnt values) may pose some problems. If

we want to compute the cnt values modulo P then the

division by the number of leaves nl needs to be

performed by multiplying the corresponding value by

nl
-1

 (the multiplicative inverse of nl modulo P).

However, depending on the number P, some numbers

nl may not have a multiplicative inverse. In such

cases we will have to compute the cnt values exactly

and then compute their remainder when divided by P

after having computed all the values.

8. EXPERIMENTAL RESULTS

We implemented the dynamic programming solution

for graphs with small 2-vertex-connected

components considering all the three algorithms from

Sections 5, 6 and 7 for computing the minimum cost

subtrees (and their numbers) corresponding to each

degree sequence (within each biconnected

components). All of our tests considered D=3.

We will first present (in Table 1) a comparison

between the algorithms from Sections 5, 6 and 7 in

terms of the number of generated subtrees (for the

algorithm from Section 5), the number of degree

sequences (for the algorithms from Sections 6 and 7)

and the number of intermediate states for 2-vertex-

connected components which are complete subgraphs

(for the algorithm from Section 6).

Table 1. Variation of the number of subtrees with at

least 2 vertices, number of distinct degree sequences

and number of intermediate states with the number of

vertices of a complete subgraph (K).

K Num-
ber of
sub-
trees

with at
least 2

vertices

Num-
ber of

distinct
degree
sequen-

ces

(D+1)K Number
of inter-
mediate
states

2K∙(D+1)K

2 1 1 16 2 64

3 6 6 64 13 512

4 34 28 256 68 4096

5 240 120 1024 331 32768

6 2205 495 4096 1577 262144

7 25466 2002 16384 7486 2097152

8 354956 8008 65536 35564 16777216

9 5793264 31824 262144 169128 134217728

In order to compare the algorithms from Sections 5, 6

and 7 in terms of running time we generated graphs

with up to 100 vertices containing as many 2-vertex-

connected components of a fixed size K as possible.

Each 2-vertex-connected component was a complete

subgraph with the cost of each edge generated

randomly as an integer between -100 and 100. We

ranged K from 5 to 9. The tests were run on an Intel

Atom N570 1.66 GHz CPU. The algorithms were

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

28

implemented in C++ and the code was compiled with

the G++ compiler, version 3.3.1. Table 2 presents the

running times of the three algorithms for each of the

5 values of K.

Table 2. Running time (in seconds) of the dynamic

programming algorithm when using the algorithms

from Sections 5, 6 or 7 for computing the number of

minimum cost subtrees corresponding to each

possible degree sequence for each 2-vertex-

connected component.

K Algorithm from
Section 5

Algorithm from
Section 6

Algorithm from
Section 7

5 0.01 0.01 0.01

6 0.02 0.05 0.03

7 0.18 0.2 0.13

8 2.25 0.99 0.54

9 33.89 4.95 1.92

We can see that using the algorithms from Sections 6

and 7 for computing the values associated to the

initial states of each 2-vertex-connected component

becomes increasingly more efficient as K increases.

The only part of the time complexity affected by the

usage of the algorithms from Sections 5, 6 or 7 is the

TI(K,D) factor.

We did not implement the dynamic programming

algorithm which is capable of using an arbitrary tree

decomposition, because it is obvious from the time

complexity analysis that its running time would be

significantly worse than the one based on the block-

cut vertex tree (if the widths of the two tree

decompositions have close values).

9. ALTERNATIVE SOLUTIONS FOR COUNTING

MINIMUM COST D-DEGREE-BOUNDED

SUBTREES

In this section we discuss two alternative solutions

for the problem addressed by the algorithms from

Sections 5, 6 and 7. For the first solution we will start

with the degree sequence corresponding to an empty

subtree (i.e. all degrees are equal to 0). We will set

cmin(0, …, 0)=0 and cnt(0, …, 0)=1. Then we will

add at the back of a queue Q all the degree sequences

corresponding to subtrees containing a single edge.

For each edge (u,v) of the graph we will construct the

degree sequence (deg1, …, degN), where

degu=degv=1 and degi=0 for i≠u and i≠v. Then we

will insert this sequence at the back of the queue Q.

We will also maintain a hash table HT with the

degree sequences already inserted in Q. Thus,

whenever a degree sequence is inserted in Q it will

also automatically be inserted in HT. As before, until

cmin(DS) or cnt(DS) are explicitly initialized for a

degree sequence DS, we will assume that

cmin(DS)=+ and cnt(DS)=0.

Then, as long as Q is not empty, we will extract from

Q the degree sequence (deg1, …, degN) located at the

front of the queue. We will choose any vertex u such

that degu=1. Then we will iterate through all the

possible subtree neighbors v of u. If the degree

sequence corresponds to a single edge (i.e. the sum of

the degrees from the sequence is 2) then v can be

only one vertex: the other vertex besides u for which

degv=1. Otherwise, v can be any of the vertices for

which degv≥2. For each possible subtree neighbor v

of u (with the extra condition that the edge (u,v)

exists in the graph) we will construct the degree

sequence (deg1’, …, degN’) such that: degi’=degi for

i≠u and i≠v, and degi’= degi-1 for i=u or i=v. We

will compute cmin’=cmin(deg1’, …, degN’)+c(u,v)

and cnt’=cnt(deg1’, …, degN’). If cmin’<cmin(deg1,

…, degN) then we will set cmin(deg1, …, degN)=cmin’

and cnt(deg1, …, degN)=cnt’; otherwise, if

cmin’=cmin(deg1, …, degN) then we will add to

cnt(deg1, …, degN) the value cnt’.

After finalizing the computation of cmin(deg1, …,

degN) and cnt(deg1, …, degN) we will generate new

degree sequences by adding an extra tree edge to the

current degree sequence. We will consider all the

pairs of vertices (u,v), such that degu=0, 1≤degv≤D-1

and (u,v) is an edge in the graph. For each such pair

(u,v) we will construct the degree sequence (deg1’,

…, degN’) such that: degi’=degi for i≠u and i≠v, and

degi’=degi+1 for i=u or i=v. If the degree sequence

(deg1’, …, degN’) was not yet inserted in Q (we look

for it in the hash table HT) then we will insert the

degree sequence (deg1’, …, degN’) at the back of the

queue Q (and also in HT, as we explained earlier).

This solution has a time complexity of

O(NumStates∙N
2
), where NumStates is the number of

different valid degree sequences (upper bounded by

(D+1)
N
). The time complexity could be improved if

we had a more efficient method of generating all the

valid degree sequences. Let’s assume that we have a

list of all the valid degree sequences (deg1, …, degN),

in order of increasing sum of degrees (i.e. in

increasing order of S=deg1+…+ degN), breaking ties

arbitrarily. Then, by traversing the degree sequences

in this order, we can compute cmin(deg1, …, degN)

and cnt(deg1, …, degN) in O(N) time for each degree

sequence (deg1, …, degN) (by using the method we

just described).

Another solution consists of computing the following

tables: auxcmin(i,deg1,…,degi) and auxcnt(i,deg1, …,

degi) for all the valid degree sequences (deg1,…,degi)

for i vertices (1≤i≤N). For i=1 we have a single valid

degree sequence: deg1=0. We have cmin(1,0)=0 and

cnt(1,0)=1. For 2≤i≤N we will proceed as follows.

As before, we assume that any uninitialized entries in

the auxcmin(i) table are equal to + and any

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

29

uninitialized entries in the auxcnt(i) table are equal to

0. We will first consider all the valid degree

sequences (deg1, …, degi) with degi=1. We will

iterate through all the graph neighbors j<i of the

vertex i such that: degj≥2 or (degj=1 and the only two

non-zero entries of the degree sequence (deg1, …,

degi) are degj and degi). For each such neighbor j we

will construct the degree sequence (deg1’, …, degi-1’),

where degk’=degk for k≠j and degj’=degj-1. We set

cmin’=auxcmin(i-1, deg1’, …, degi-1’)+c(i,j) and

cnt’=auxcnt(i-1, deg1’, …, degi-1’). If

cmin’<auxcmin(i, deg1, …, degi) then we will set

auxcmin(i, deg1, …, degi)=cmin’ and auxcnt(i, deg1,

…, degi)=cnt’; otherwise, if cmin’=auxcmin(i, deg1,

…, degi) then we will add to auxcnt(i, deg1, …, degi)

the value cnt’.

Next we will consider all the valid degree sequences

(deg1, …, degi) with 2≤degi≤D, in increasing order of

degi (breaking ties arbitrarily). For each such degree

sequence we will consider all the valid degree

sequences (deg1’, …, degi’) such that degj’=0 or

degj’=degj (for 1≤j≤i-1), degi’=1 and the degree

sequence (deg1’’, …, degi’’) is also a valid degree

sequence, where degj’’=degj-degj’ (for 1≤j≤i). We

will compute cmin’=auxcmin(i, deg1’, …,

degi’)+auxcmin(i, deg1’’, …, degi’’) and

cnt’=auxcnt(i, deg1’, …, degi’)∙auxcnt(i, deg1’’, …,

degi’’). If cmin’<auxcmin(i, deg1, …, degi) then we

will set auxcmin(i, deg1, …, degi)=cmin’ and

auxcnt(i, deg1, …, degi)=cnt’; otherwise, if

cmin’=auxcmin(i, deg1, …, degi) then we will add to

auxcnt(i, deg1, …, degi) the value cnt’. In order to

avoid double-counting in this case, let’s consider that

j is the smallest index such that degj≥1. We will set

degj’=degj for this index j (i.e. we will not consider

the case degj’=0, too); thus, we will have degj’’=0.

We will also have auxcmin(i, degj=0 (1≤j≤i))=0 and

auxcnt(i, degj=0 (1≤j≤i))=1.

In the end we have cmin(deg1, …, degN)=auxcmin(N,

deg1, …, degN) and cnt(deg1, …, degN)=auxcnt(N,

deg1, …, degN) for every valid degree sequence (deg1,

…, degN). A simple analysis shows us that the time

complexity of this approach is upper bounded by

O((D+1)
N
∙N+(D+1)

N
∙2

N-2
). Note that in this case we

did not specify how to generate all the valid degree

sequences for i vertices (1≤i≤N). We could use the

method from the previous solution or one of the

methods presented in Sections 6 or 7. We also did not

include the time complexity of the generation of

valid degree sequences into the stated upper bound.

10. RELATED WORK

The problem of finding a minimum cost degree

bounded subtree in an undirected graph has been

studied from various perspectives in the scientific

literature. Many papers considered the problem of

computing an optimal spanning tree (or subgraph)

under various degree constraints. Approximation

algorithms for finding spanning trees which violate a

maximum degree bound by a small constant while at

the same time having a cost at most equal to that of

the optimal degree bounded spanning tree were

proposed in (Goemans, 2006) and (Singh and Lau,

2007). A more general approach regarding the

constraints imposed on the spanning tree edges

adjacent to each vertex was considered in

(Zenklusen, 2012). Approximation algorithms for

finding maximum bounded degree spanning

subgraphs were proposed in (Feng et al., 2009). A

branch-and-cut algorithm for finding a degree-

constrained minimum spanning tree was presented in

(Behle et al., 2007).

The problem of finding a minimum cost degree

bounded subtree is similar to several other well-

studied problems. For instance, when D=2, the

problem is equivalent to finding the path of minimum

total length (note that this is equivalent to the longest

path problem if we negate all the cost values).

Algorithms based on dynamic programming on tree

decompositions of graphs for finding optimal

connected or degree-constrained subgraphs or vertex

subsets were also presented in the literature. An

algorithm for the Connected Vertex Cover problem

was presented in (Moser, 2005). An algorithm for the

Connected Feedback Vertex Set problem was

described in (Misra et al., 2010). An algorithm for

finding a minimum subgraph with minimum degree

at least D (but not necessarily connected) was

proposed in (Amini et al., 2009). A solution for the

Steiner Tree problem was presented in (Chimani et

al., 2012). A general method for developing dynamic

programming algorithms on tree decompositions was

presented in (Arnborg and Proskurowski, 1989) .

However, the algorithms obtained by employing the

proposed method are not the most efficient possible

in terms of time complexity.

Instead of a tree decomposition some authors used a

branch decomposition of the graph. For instance, in

(Sau and Thilikos, 2010), the authors present a

branch decomposition-based dynamic programming

algorithm for finding a connected induced D-degree-

bounded subgraph having a maximum number of

edges (or vertices).

Counting certain types of subgraphs of a given base

graph is a problem which has been considered many

types in the scientific literature (e.g. counting

spanning trees in dense graphs (Person, 2007)).

However, counting subgraphs obeying some cost

optimality criterion has received less attention.

11. CONCLUSIONS

In this paper we presented novel efficient algorithms

for finding the minimum cost of a degree-bounded

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2013, VOL. 36, NO. 1, ISSN 1221-454X

__

30

subtree of a graph and the number of such subtrees,

when the graph has 2-vertex-connected components

with small sizes. The algorithm uses a special tree

decomposition of the graph, called the block-cut

vertex tree. The proposed solution was also evaluated

experimentally.

We also presented a general solution which is

capable of using any tree decomposition of the graph,

but it is less efficient than the one based on the block-

cut vertex tree.

Our solutions consider that the maximum degree of

each vertex in the subtree can be at most D. The

solutions can be modified in a straight-forward

manner in order to have different upper bounds for

different vertices. For instance, these bounds can be

easily integrated in the algorithms from Sections 5, 6

and 7. In the dynamic programming algorithms,

when the degrees of some vertices increase (either

because of joining states from adjacent tree nodes or

because new vertices are introduced), we need to

replace the verification that the new degrees do not

exceed D by the verification that the new degrees do

not exceed the upper bounds of the corresponding

vertices.

12. REFERENCES

 Amini, O., D. Peleg, S. Perennes, I. Sau and S.

Saurabh (2009). Degree-Constrained Subgraph

Problems: Hardness and Approximation Results,

Lecture Notes in Computer Science, vol. 5426,

pp. 29-42.

 Andreica, M. I. (2006). The Tree of Biconnected

Components and Critical Nodes, GInfo, vol. 16

(5), pp. 11-17.

 Arnborg, S. and A. Proskurowski (1989). Linear

Time Algorithms for NP-Hard Problems

Restricted to Partial k-Trees, Discrete Applied

Mathematics, vol. 23, pp. 11-24.

Behle, M., M. Junger and F. Liers (2007). A Primal

Branch-and-Cut Algorithm for the Degree-

Constrained Minimum Spanning Tree Problem,

Lecture Notes in Computer Science, vol. 4525,

pp 379-392.

Chimani, M., P. Mutzel and B. Zey (2012). Improved

Steiner Tree Algorithms for Bounded Treewidth,

Journal of Discrete Algorithms, vol. 16, pp. 67-

78.

Dekker, A., H. Perez-Roses, G. Pineda-Villavicencio

and P. Watters (2012). The Maximum Degree &

Diameter-Bounded Subgraph and its

Applications, Journal of Mathematical

Modelling and Algorithms, vol. 11 (3), pp. 249-

268.

Feng, W., H. Ma, B. Zhang and H. Wang (2009).

Approximating Bounded Degree Maximum

Spanning Subgraphs. In: Proceedings of the 8th

International Symposium on Operations

Research and Its Applications, pp. 83-89.

Goemans, M. X. (2006). Minimum Bounded Degree

Spanning Trees. In: Proceedings of the 47th

International Symposium on Foundations of

Computer Science, pp. 273-282.

Kintali, S. and S. Munteanu (2012). Computing

Bounded Path Decompositions in Logspace,

Electronic Colloquim on Computational

Complexity, Report No. 126.

Misra, N., G. Philip, V. Raman, S. Saurabh and S.

Sikdar (2010). FPT Algorithms for Connected

Feedback Vertex Set. In: Proceedings of the 4th

international conference on Algorithms and

Computation (WALCOM), pp. 269-280.

Moser, H. (2005). Exact Algorithms for

Generalizations of Vertex Cover, Diplomarbeit,

Institut für Informatik, Friedrich-Schiller-

Universität Jena.

Y. Person (2007). Counting Spanning Trees in Dense

Graphs. Diploma Thesis, Technical University

Munchen.

S. Pirzada (2012). An Introduction to Graph Theory,

Universities Press.

Sau, I. and D. M. Thilikos (2010). Subexponential

Parameterized Algorithms for Degree-

Constrained Subgraph Problems on Planar

Graphs, Journal of Discrete Algorithms, vol. 8

(3), pp. 330-338.

Singh, M. and L. C. Lau (2007). Approximating

Minimum Bounded Degree Spanning Trees to

within One of Optimal. In: Proceedings of the

39th ACM Symposium on Theory of Computing,

pp. 661-670.

Zenklusen, R. (2012). Matroidal Degree-Bounded

Minimum Spanning Trees. In: Proceedings of

the 23rd ACM-SIAM Symposium on Discrete

Algorithms, pp. 1512-1521.

