
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

__

This paper was recommended for publication by Adrian Filipescu

11

ROBUST ROUTING INFORMATION UPDATING IN IPV6 NETWORKS

Cosmin Adomnicăi, Viorel Mînzu

Faculty of Automatics, Computer science, Electrical and Electronic Engineering,

University “Dunarea de Jos” of Galaţi, Romania

Abstract: The mechanism that classical routing protocols use to transmit routing updates

and to maintain adjacency can be susceptible to packets loss and to bandwidth

limitation. We propose a new method for transmitting routing information and hello

information which can assure delivery even if the links are lossy or their capacity is

limited. This method is adapted to IPv6 packets and, with the implementation of a

routing algorithm, it builds the routing tables.

Keywords: networking, IPv6, routing, stability, bandwidth.

INTRODUCTION

Classical routing protocols like RIP (Routing

Information Protocol), OSPF (Open Shortest Path

First), EIGRP (Enhanced Interior Gateway Routing

Protocol) use discrete packets to transmit hello

information or to transmit routing information

updates. If the link’s capacity can accommodate user

traffic, management traffic and routing protocol’s

traffic, the routers should not lose adjacency. On the

other hand, if the links bandwidth does not suffice to

the traffic needs, packets are lost in the transit. Along

with user packets, routing protocol’s packets can be

lost and this leads to adjacency loss.

The most common cause for instability in a network

is the link failure (Markopoulou, et al., 2004). In

many cases the customers are connected to the

backbone using leased lines which are more volatile

(Shaikh, et. al., 2002). In a study, published by

Watson, et al. (2003), made by monitoring OSPF

behavior in a service provider network, a major cause

of instability was the unstable links. By analyzing the

behavior of some routing protocols under lossy links

condition, we can see that their stability is susceptible

to packet loss. The simulations made by Adomnicăi

and Mînzu (2012) measured the percent of lost traffic

due to instability induced by lossy links (Table 1).

RIP routing protocol, in the default configuration,

implements long timers until a neighbor is declared

down. So, even if some Hello packets are lost, until

the timer expires, there is a large probability that a

Hello packet will arrive and the adjacency will be

maintained. The main disadvantage is that RIP will

react to slow to a failure in the network

For OSPF the degree of time in which adjacency is

lost increases with the bandwidth limitation. At 40%

packet loss, OSPF loses adjacency for 75.91% of the

simulation time.

EIGRP, for 10% packet loss, loses already adjacency

for 29.75% of the simulation time. This percent

increases with the degree of packet loss and, at 40%

packet loss, for EIGRP, traffic is not forwarded for

70.17% of the simulation time.

Table 1 Total time of lost traffic for RIP, OSPF and

EIGRP using lossy links

 Percent of time for which traffic is

interrupted due to adjacency lost

Routing

protocol

10%

loss

20%

loss

30%

loss

40%

loss

RIP 0% 0% 0% 0%

OSPF 2.91% 8.75% 13.58% 75.91%

EIGRP 29.75% 29.84% 69.75% 70.17%

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

12

In the simulations made by Adomnicăi (2012) it was

shown that bandwidth limitation can have a

destabilizing role, depending on the degree of

limitation. For 40 Mbps generated traffic with 10

Mbps bandwidth limitation the values from Table 2

were obtained. As it can be seen, RIP does not loose

adjacency because of its the long timers.

OSPF and EIGRP, even if there are two links

between the routers, lose adjacency and traffic is not

forwarded. For OSPF, with a single link between the

routers, the adjacency is lost for 24% of the

simulation time. If another link is added between the

routers, the adjacency is lost for 34% of the

simulation time.

For EIGRP, the percent in which the traffic is lost

due to the adjacency loss is higher than OSPF. If

between the routers is a single link, traffic is not

forwarded between the routers for 82% of the

simulation time. If another link is added then traffic

is not forwarded for 47% of the simulation time.

Table 2 Total time of lost traffic under bandwidth

limitation for RIP, OSPF and EIGRP

Routing

protocol

Number of

links between

two simulated

routers

Total time of

lost traffic

Percent

of lost

traffic

time

RIP
1 0 seconds 0%

2 0 seconds 0%

OSPF
1 288 seconds 24%

2 408 seconds 34%

EIGRP
1 984 seconds 82%

2 564 seconds 47%

ROBUST UPDATING USING DESTINATION

OPTIONS EXTENDED HEADER

As we saw, routing protocols are sensitive to traffic

conditions. If the links are broken and this induces

packet loss or if the traffic is bandwidth limited,

routing protocols can think that the corresponding

neighbors are down and, as a consequence, the routes

through them are withdrawn. In a packet loss

scenario this can be a good think. If the link is faulty

then routing protocols should avoid it. But, if the link

is functional and if it is a leased line and its speed is

much lower than the standard 100 Mbps 100Base-T

then routing protocols, in a situation of heavy user

traffic, can think that the corresponding neighbor is

down and the traffic is not forwarded using this link.

Adomnicăi and Danilescu (2011) and Adomnicăi and

Mînzu (2012) proposed and tested a robust method

for transmitting routing information and hello

packets. This method was developed for IPv6

networks and uses an extended header. From all the

available extended headers the Destination Options

Extended Header was chosen. The other headers can

change or can be eliminated from packets when

traversing a router. The Destination Options header is

used when additional information needs to be

transmitted between source and destination and will

not be changed or dropped by routers on transit (see

Deering, 1998; Kozierok, 2005).

This method, called INFXCHG (INFormation

eXCHanGe), transmits updates sequentially. To each

packet that leaves the network interface the 40 bytes

Destination Options extended header is attached

which contains the following fields:

 4 Standard fields: Next header (1 byte), Header

length (1 byte), Option Type (1 byte), Option Length

(1 byte).

 6 additional fields: Network (16 bytes), Mask (1

byte), Cost (1 byte), Network acknowledge (16

bytes), Mask acknowledge (1 byte); Route Operation

(1 byte).

The principle, used in transmission of the updates, is

based on persistent ARQ strategy (useful information

in Fairhurst and Wood, (2002); Peterson and Davie,

2011). Using this mechanism (Fig.1.), an update is

sent continuously until an acknowledge is received.

After this, the next update will be send or the

updating mechanism will stop.

If there is no update or acknowledge to be sent, the 6

additional fields in Destination Options Extended

header are filled with zeros. This kind of packet will

act as a Hello packet maintaining adjacency between

neighboring routers.

Fig.1. Updating mechanism for INFXCHG

When a packet is received (Fig.2.), INFXCHG

verifies if it contains Destination Options Extended

Header. After that it verifies if there is an update or

acknowledge. If there is an update the routing buffer

and the routing table are modified and the update is

added to the buffer with acknowledges that need to

be sent. If in the Extended Header an acknowledge is

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

13

found then the corresponding entry from the buffer

with updates that need to be sent is removed.

When a packet needs to be sent (Fig.3.), INFXCHG

verifies the buffer with updates to be sent and the

buffer with the acknowledges to be sent. If there are

found any entries, the last ones are added to the

Extended Header.

Fig.2. Operations done when receiving a packet

Packet to be sent
(NF_IP6_POST_ROUTING)

Update to be
sent ?

Acknowledge to
be sent ?

Add update to the
packet

Add acknowledge
to the packet

END

YES

YESNO

NO

Fig.3. Operations done when sending a packet

If there is no user traffic then the updates cannot be

sent. Therefore, a traffic generator had to be

implemented in order to provide the means to send

updates and to maintain adjacency between routers.

IMPLEMENTATION AND SIMULATION OF

INFXCHG

The implementation for INFXCHG was done in C++

and the software was made as a Linux Kernel

module. This choice was done in order to benefit of

the processing speed. Processes that run in the kernel

memory space have greater priority than the

processes that run in the user memory space.

In order to add the extra header packets must be

captured. For this, the NETFILTER platform was

used. Two functions were registered: a function that

treats incoming packets (Fig.2.) and a function for

outgoing packets (Fig.3.). The development was done

using KDevelop on OpenSUSE 11.3 Linux

distribution.

Debugging when developing a kernel module was

difficult because breakpoints cannot be inserted. So

the work was done inside a virtual machine in order

to save the running state before testing different

stages. If the running of INFXCHG would cause a

kernel hang-up, the virtual machine could be restored

at the previous state. In this way the system restart

could be avoided.

For each important event that appeared in the

functioning of INFXCHG a debug message was

generated. Along with the message, the Linux kernel

attached a timestamp to the message. The events that

generated a debug message are:

 Initializing messages;

 Interface UP/DOWN events;

 New routing update; this event triggers a listing

of the routing table;

 Messages on INFXCHG exit.

For each active network interface a thread is created

in order to generate dummy traffic in the periods of

user inactivity. Each thread watches for traffic and if

there is a pause it starts generating until user traffic

starts to pass the router.

In each test scenario (Fig.4. – Fig.7.), for every

router, a virtual machine was created. The number of

network interfaces added to the virtual machine was

according to the number of links. The end stations

(S1 – S4) were simulated by running processes on the

virtual machine itself. Otherwise, for the five routers

test scenario would have been necessary nine virtual

machines. In order to virtually connect the network

interfaces multiple LAN Segments were created. The

virtual network interfaces were connected to the

LAN segments in order to communicate between

them.

The bandwidth limitation could be achieved in two

ways:

 Using the virtual machine software’s options to

manage network interface’s bandwidth;

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

14

 By applying the limitation directly in the virtual

machine by means of using traffic shaping options in

Linux.

The first choice in which the limitation was applied

at the virtual machine level was not stable enough.

After testing this method, we saw that there were

fluctuations from the established value.

The second choice was more stable and the variations

from the established value were diminished.

Using the timestamp provided with each message we

could compute the time difference between different

events. Therefore, to compute the stabilization time,

the time difference the module initialization and the

last update received.

Fig.4. Two routers test scenario

Fig.5. Three routers test scenario

Fig.6. Four routers test scenario

Fig.7. Five routers test scenario

Based on the received routing updates, using

Bellman-Ford algorithm, the routes are constructed.

In this implementation each link has a cost of 1 and,

thus, the route cost is the number of hops between

current router and destination. Updates are sent step

by step until all the routers have the same image of

the network. In choosing the links on which to send

an update, the Split Horizon principle is used. This

means that an update is not sent on the same interface

on which it arrived.

When an update arrives, the cost is incremented, the

routing table is updated and a new update with the

new cost is constructed and sent to the neighbors. In

order to update the kernel’s routing tables the

NETLINK platform was used.

By having implemented a routing algorithm,

INFXCHG became a routing protocol. Using

Bellman-Ford algorithm INFXCHG is a distance

vector routing protocol.

The forwarding process is done in kernel. When a

packet arrives, based on the routing table, the

kernel’s networking subsystem will choose the

outgoing interface.

To determine the stabilization time, all the routers,

excepting the last, were started. We waited for the

routing tables to stabilize and Rn router (last router)

was started and we measured the time difference

between the INFXCHG start-up time and the time

when the network stabilized.

If Tj, j{n-1,n}, is the time at which the routing table

of routers R1, R2, …, Rj is in a stable state, then the

stabilization time is:

=Tn-Tn-1

After computing all the times for different bandwidth

limitations, the values for INFXCHG from the Table

3 are obtained.

COMPARATIVE STUDY BETWEEND INFXCHG

AND OTHER ROUTING PROTOCOLS

To calculate the initial stabilization time St for OSPF

and EIGRP we used:

(2) St = TS – TStart, where

Ts – the time moment at which the network had

stabilized;

St – time difference between Ts and the start time

moment of routing protocol on the last router in

the network;

In the simulations TStart=20. In each scenario,

between routers, 100 Mbps of traffic is generated.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

15

Applying the bandwidth limitations, the values for St

from Table 3 were obtained.

For OSPF and EIGRP the default parameters are

used. With these default parameters, OSPF stabilizes

initially in over 50 seconds. As the bandwidth

limitation is increased, the stabilization times for

OSPF and EIGRP also increase. INFXCHG is the

fastest because of its design. As the bandwidth

limitation increases, for INFXCHG, the stabilization

time increases but at a much slower rate than other

routing protocols.

Table 3 Initial stabilization time for OSPF, EIGRP

and INFXCHG

 St

Test

scenario

Bandwidth

limitation
OSPF EIGRP INFXCHG

2

routers

100Mbps 55.32 0.0000181 0.000007

10Mbps 85.23 26.19 0.000009

4Mbps 85.23 55.00 0.000018

2Mbps 85.23 120.07 0.000017

1Mbps 97.71 123.08 0.000017

512Kbps 65.23 15.00 0.000017

256Kbps 65.23 15.00 0.000018

128Kbps 65.23 15.01 0.000019

3

routers

100Mbps 65.01 10.00 0.004102

10Mbps 75.06 95.00 0.009043

4Mbps 157.46 67.99 0.014

2Mbps 251.97 66.00 0.02

1Mbps 247.66 79.04 0.04

512Kbps 253.90 255.75 0.06

256Kbps 65.06 30.01 0.18

128Kbps 65.06 30.02 0.65

4

routers

100Mbps 65.01 10.00 0.007

10Mbps 75.00 76.20 0.01

4Mbps 75.01 210.00 0.02

2Mbps 75.01 135.08 0.03

1Mbps 92.03 258.59 0.05

512Kbps 253.69 76.95 0.09

256Kbps 65.02 30.06 0.32

128Kbps 65.03 30.11 0.70

5

routers

100Mbps 55.23 10.00 0.009929

10Mbps 242.49 41.20 0.02

4Mbps 75.24 33.00 0.05

2Mbps 75.24 30.00 0.10

1Mbps 252.92 177.13 0.20

512Kbps 251.05 110.36 0.42

256Kbps 264.28 40.03 0.98

128Kbps 108.60 35.00 1.96

The number of routers has not such big impact on the

stabilization time. The main factor than lead to the

increase of St is the bandwidth limitation (Fig.8.).

Another set of simulations is done for RIP, OSPF,

EIGRP and INFXCHG in order to measure the

stabilization time without user traffic or bandwidth

limitation (Table 4 and Fig.9.). The links were

100BaseT at 100 Mbps. For INFXCHG, in the

absence of user traffic, the generators started in order

to transmit the updates and to maintain adjacency.

The other routing protocols benefit from the

advantage of sending multiple updates at once.

Fig.8. Initial stabilization time for OSPF, EIGRP and

INFXCHG

OSPF stabilizes last in all scenarios because of its

design. In two and three routers test scenarios the

fastest is RIP, but as the number of routers increases,

it will stabilize more slowly.

Overall, EIRPG is the fastest. In two and three

routers test scenarios it is second, but in four and five

routers test scenarios it is the fastest.

INFXCHG has overall good performance. The

updates are sent sequentially and this is the reason for

which it stabilizes slower than EIGRP. In the absence

of bandwidth limitation, the stabilization time

increases with the number of routers. This is normal;

as the network diameter increases the time needed to

propagate de information increases.

Table 4 Stabilization time for RIP, OSPF, EIGRP

and INFXCHG without traffic and bandwidth

limitation

Scenario 2 routers 3 routers 4 routers 5 routers

RIP 0.00001 0.00001 20.00001 20.00001

OSPF 55.37 55.43 55.14 55.41

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

16

EIGRP 0.00004 0.00004 0.00004 0.00005

INFXCHG 0.000007 0.004 0.007 0.009

Fig.9. Stabilization time for RIP, OSPF, EIGRP and

INFXCHG without traffic and bandwidth

limitation

CONCLUSION

If the links between routers are faulty and they cause

packet loss or if the links are bandwidth limited then

routing protocols can enter an unstable state. In this

state adjacency is lost and restored leading to route

adding and withdrawing. The final consequence is

that the user traffic could be lost because of the

instability. In the links are lossy then some user

traffic is lost anyway. But if the links are bandwidth

limited then user traffic can be lost without the link

being faulty.

INFXCHG was designed to avoid instability

problems cause by lossy or bandwidth limited links.

Its robustness derives from how the updates are sent.

Each updates have to be acknowledged. In order to

ensure that an update reaches its neighbor, it is sent

until an acknowledge is received. The link load is

approximately 2,66% with the advantage of

robustness.

Another main advantage is that the adjacency is

constantly maintained. So, if a neighbor or link goes

down, INFXCHG detects this event immediately.

This way, the duration of routing loops, until the

network stabilizes, is minimized.

Being implemented as a kernel module, INFXCHG is

fast and this has minimum impact on the packet

processing latency.

For now, we consider only the number of hops in

calculating the routes cost. For the future we want to

consider other parameters like: link delay, link load,

link bandwidth, link stability, router stability.

Because the updates are sent sequentially, INFXCHG

is not the fastest routing protocol. Depending of the

packet size, the Destination Options Header could be

enlarged in order to accommodate multiple updates

and acknowledges at once. This way, the network

could stabilize more rapidly.

REFERENCES

Adomnicăi, C. and M. Danilescu (2011). Routing

updates using Destination options network

header in IPv6 networks. In: Proceedings of

International Conference on Computer

Technology and Development, vol.2, pp. 469-

473, Chengdu, China.

Adomnicăi, C. (2012). Routing protocols behaviour

under bandwidth limitation. In: Proceedings of

International Conference on Information and

Computer Networks, vol. 27, pp. 52-57,

Singapore.

Adomnicăi, C. and V. Mînzu (2012). Method for

adjacency information updating in IPv6

networks. In: Proceedings of the 16th

International Conference on System Theory,

Control and Computing Joint Conference

SINTES 16, SACCS 12, SIMSIS 16, Sinaia,

Romania.

Deering, S. and R. Hinden (1998). Internet Protocol,

Version 6 (IPv6) Specification, Request for

comments 2460, Internet Engineering Task

Force.

Fairhurst, G. and L. Wood (2002). Advice to link

designers on link Automatic Repeat reQuest

(ARQ), Request for comments 3366, Internet

Engineering Task Force.

Kozierok, Charles M. (2005). The TCP/IP Guide: A

Comprehensive, Illustrated Internet Protocols

Reference, William Polloc.

Markopoulou, A., G. Iannaccone, S. Bhattacharyya,

C.-N. Chuah and C.Diot (2004),

Characterization of failures in an IP backbone.

In: Proceedinngs of IEEE INFOCOM, Hong

Kong.

Peterson L. Larry and S. Bruce Davie (2011).

Computer Networks a system approach (Fifth

Edition), Morgan Kaufmann.

Shaikh, A., C. Isett, A. Greenberg, M. Roughan and

J. Gottlieb (2002). A Case Study of OSPF

Behavior in a Large Enterprise Network. In:

Proceedings of ACM SIGCOMM Internet

Measurement Workshop.

 Watson, D., F. Jahanian and C. Labovitz (2003).

Experiences with Monitoring OSPF on a

Regional Service Provider Network. In:

Proceedings of International Conference on

Distributed Computing Systems, pp. 204–213.

