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Abstract: This article presents a method to transform a chaotic sequence of real numbers 

into multiple bitstreams, using multi-level discretization. Although the original intent 

was to achieve a higher/multiple flow of bits, much faster (i.e. in terms of computational 

time), it was subsequently conjugated with the one of preserving statistical properties of 

newly formed bitstreams (i.e. to have the ability of keeping their recommendations for 

usage within secure cryptographic application and not only, e.g. stochastic computing 

and/or generation of simulation data for the study of traffic in networks, whether they 

are WSNs, ATM or Telecoms). Thus, CrypTool, VRA and NIST battery of statistical 

tests were used in order to present an analysis of the randomness of the bitstreams 

obtained by applying the proposed discretization method. Theoretical and practical 

arguments, rounded by good statistical results, confirm viability of the proposed method 

and recommend it in generation of multiple bitstreams that will be used for secure 

cryptographic applications. 

Keywords: chaotic dynamical system, randomness testing, multi-level discretization, 

VRA, NIST. 

 

INTRODUCTION 

In last two decades, interesting relationships between 

chaos and cryptography have been developed, many 

properties of chaotic systems (e.g. mixing properties, 

ergodicity, sensitivity to initial conditions or system’s 

parameters, structural complexity and deterministic 

dynamics) being considered analogous to confusion, 

diffusion with small change in plaintext or secret key, 

diffusion with a small change within one block of the 

plaintext, deterministic pseudo-randomness and / or 

algorithmic complexity of traditional cryptosystems. 

As a result, several chaos-based cryptosystems have 

been put forward since 1990. Although chaos implies 

unpredictable time behavior of system, its dynamics 

(whose evolution seems to be true random) can be 

expressed by one or more deterministic rules. This is 

one of the main properties of chaotic dynamical 

systems which have encouraged the idea to design 

new pseudo-random number generators and also to 

develop some robust encryption schemes based on 

chaotic sequences (Alvarez and Li, 2006; Li, et al., 

2001; Kocarev, et al., 1998; Li, et al., 2003). 

Cryptosystems are not the only applications where 

chaos-based PRNG found their place; e.g. WSNs are 

highly vulnerable to the failure of BS (i.e. adversaries 

can easily render WSNs useless by launching remote 

software / physical based attacks on the BS), leading 

to few research works, as the one conducted by Jing, 

et al. (2005), which address the problem of defending 

BSs against physical attacks (i.e. by concealing BSs’ 
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geographic location, using some randomness degrees, 

introduced in different paths within the WSN). 

Obviously, purpose for which chaos-based PRNGs 

were designed and widely used does not just stop at 

these applications. This ample range of applications 

substantiated the present research, on the generation 

of multiple bitstreams using chaotic sequences. 

PROPOSED DISCRETIZATION METHOD 

2.1. Chaotic maps and their discretization method 

The logistic and tent (1) maps are most widely used 

maps into designing of brand new digital chaotic 

cryptosystems (Arroyo, et al., 2008; Alvarez, et al., 

2012; Luca, et al., 2009; Şerbănescu, et al., 2008; Li, 

et al., 2005). Without insisting on theoretical and 

practical aspects, related to these maps’ exploitation, 

typical discretization method (2) of (1) is presented 

(Sebesta, 2007). 
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2.2.  Proposed multi-level discretization method 

For generation of multiple bitstreams, using chaotic 

sequence, the multi-level discretization method (3) is 

proposed. 
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Resulted di-bits are spreaded into two separate files, 

called bitstream_A.txt (which contains di-bit’s first 

bit) and bitstream_B.txt (containing di-bit’s second 

bit). 

3. STATISTICAL TESTING 

In order to assess bitstreams’ suitability within any 

cryptographic appl. (i.e. their statistical properties, 

true randomness), different tools sunch as CrypTool, 

VRA and NIST were used. Operating methodology, 

for each of them, and obtained results are presented 

and discussed in the following subsections. 

4.1. CrypTool analysis 

From the information theory, by Claude E. Shanon 

(1948), CrypTool
1
 was used to compute frequencies 

of binary strings composed of n characters (i.e. the  

                                                           

1 Open-source program offering an innovative visual programming 

GUI to experiment with cryptographic procedures and to animate 
their cascades. Last accessed on [01.10.2012]: www.cryptool.com.  

n-grams). For true random strings, is expected that 

each entry within n-gram has the same probability of 

occurrence, given by (4).  

 (4) 100
2

[%] 
n

i
P   

where, i represents the binary string’s length and 

n represents the n-gram’s order. 

n-gram statistics were performed over 100 randomly 

chosen binary sequences, each sequence of length      

i = 10.000.000 bits, overall results being presented in 

table 1.Table 1. n-gram reports 

n-gram’s order 
bitstream 

A B 

Histogram 

(n = 1) 

1 50.3429% 50.3124% 

0 49.6571% 49.6876% 

Digram 

(n = 2) 

00 24.5009% 24.5581% 
01 25.1562% 25.1294% 

10 25.1562% 25.1295% 

11 25.1866% 25.1829% 

Trigram 

(n = 3) 

000 11.9561% 12.0423% 
001 12.5448% 12.5157% 

010 12.5714% 12.5559% 
011 12.5848% 12.5735% 

100 12.5448% 12.5158% 

101 12.6114% 12.6137% 
110 12.5847% 12.5736% 

111 12.6018% 12.6093% 

 0000 5.7275% 5.8052% 

 0001 6.2286% 6.2370% 
 0010 6.2670% 6.2455% 

 0011 6.2778% 6.2702% 

 0100 6.2666% 6.2627% 

4-Gram 0101 6.3048% 6.2932% 

(n = 4) 0110 6.2985% 6.2692% 

 0111 6.2863% 6.3043% 
 1000 6.2286% 6.2371% 

 1001 6.3162% 6.2787% 

 1010 6.3044% 6.3104% 
 1011 6.3070% 6.3033% 

 1100 6.2782% 6.2531% 

 1101 6.3065% 6.3205% 
 1110 6.2862% 6.3044% 

 1111 6.3155% 6.3049% 

12-Gram 

(n = 12) 

00…00 - 0.0109% 
…   ≈ 0.0244%     ≈ 0.0244% 

11…11 0.0231% 0.0287% 

Table's 1 analysis not only doesn't emphasizes the 

dominant presence of any sub-strings (i.e. in terms of 

frequency of use) (Banerjee and Pedersen, 2003; 

Muise, et al., 2009) but also highlights a uniform 

system dynamics (i.e. in terms of the time evolution 

of fT’s trajectories, balanced between all four 

thresholds). Therefore, positive results obtained at 

this point guide us to perform the next statistical 

analysis.  

4.2. VRA analysis 

RPs (i.e. Recurrence Plots) yield very important 

insights into the time evolution of fT’s trajectories, 

because typical patterns in RPs are linked to specific 

http://www.cryptool.com/
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system behaviour (Marwan, et al., 2007). Without 

proper settings of analysis parameters resulted RPs 

will be images completely devoided of information. 

To obtain as much information, suitable embedding 

dimension and adequate time delay must be chosen. 

Using MI and FNN (i.e. Mutual Information, and 

False Nearest Neighbours) VRA’s toolboxes these 

parameters can be correctly set to the optimal value 

(Jorge and Dulce, 2002).  

MI and FNN were performed on each bitstream (each 

having 1.000.000 bits in length, generated with 100 

randomly chosen seeds), with the aid of resulting 

parameters (i.e. embeding dimension m = 5 and time 

delay d = 3) each bitstream’s RPI being computed, as 

shown in Fig. no. 1 and Fig. no. 2. 

 
Fig. no. 1 RPI of bitsream A 

 

 
Fig. no. 2 RPI of bitsream B 

Lack in clear patterns, in either RPI, indicates that 

consecutive samples in bitsreams’ structure are much 

far apart and uncorrelated. RPIs’ homogeneity along 

the major diagonal and irregular distribution 

highlights a stationary, mostly stocastic behaviour 

(i.e. intrinsically non-deterministic, non-intermitent 

and sporadic) of the system that has generated the 

bitstreams and, namely, a true random process (i.e. 

random binary strings). 

Table 2. VRA general statistics 

statistics 
bitstream 

A B 

Mean 0.5034 0.5031 

Variance 0.2500 0.2500 

Standard deviation 0.5000 0.5000 

Skewness - 0.0137 - 0.0124 

Kurtosis - 1.9998 - 2.0001 

VRA Tool provides and other additional general 

statistics (i.e. mean, standard deviation, percentage of 

recurrence and determinism, entropy etc.), some of 

them, the most important ones, being quantified in 

table 2. It can be noticed that standard deviation and 

variance have values close to ideal, except of mean 

(as it was expected, refer to histogram values). 

Despite the fact that Skewness has a negative value 

(i.e. indicating that the tail on the left side of the 

probability density function is longer than the right 

side and the bulk of the values lie to the right of the 

mean) its close to zero value indicates that the values 

are relatively evenly distributed on both sides of the 

mean, typically (but not necessarily) implying a 

symmetric distribution (Doane and Seward, 2011). 

At the same time, Kurtosis’s high level and negative 

value denotes a platykurtic distribution (i.e. data set 

with flatter peak around its mean, which causes thin 

tails within the distribution and low level of data 

fluctuation) (DeCarlo, 1997). 

 

Good general statistical properties revealed with the 

aid of VRA (i.e. visually – evaluation of structural 

properties or through RQA – numerical properties 

quantification), highlights randomness of bitstreams 

generated using fT, in conjuction with the proposed 

discretization method, allowing advance to NIST 

statistical testing. 

4.3. NIST statistical testing 

In order to determine system’s security level (i.e. of 

the system resulting from the implementation of 

proposed multi-level discretization method, on 

chaotic sequences of real numbers) against some 

statistical cryptanalytic attacks (Alvarez, et al., 2003; 

Patidar and Sud, 2009; Kocarev and Lian, 2011), 

NIST standard battery of tests (Rukhin, et al., 2010; 

Kim, et al., 2004) was used, as a tool for statistical 

analysis of randomness. 

Thus, we undergone to the assessment of the results 

obtained from testing the randomness of the values 

generated by the orbits of fT map and, subsequentlly, 



THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI 

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X 

__________________________________________________________________________________________ 

40 

 

subjected to discretization process, with four 

thresholds (i.e. 2-bit encoding of each interval).  

First NIST tests were performed on bitsteams 

computed with the first lexicographically generated 

encodings of the thresholds (i.e. [0,0.25] coded as 00, 

[0.25,0.50] as 01, [0.50,0.75] as 10, [0.75,1] as 11). 

For the numerical experimentations were generated 

2000 (i.e. sample size m = 2000) different binary 

sequences from 100 randomly chosen seeds, each 

sequence having a length of n = 1.000.000 bits, and 

computed p-value corresponding to each sequence 

for all the 17 tests of the NIST suite. 

The significance level of each test in NIST is set to 

1%, which means that 99% of test samples pass the 

tests if the random binary sequence is truly random. 

The acceptance region of the passiong ratio is given 

by (5), where m represents the number of samples 

tested and p = 1 – α is the probability of passing each 

test. For m = 2000 and the probability  p = 0.99 (i.e. 

corresponding to the significance level α = 0.01) the 

confidence interval [0.983, 0.996] was obtained. 
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In tables 3 and 4 the results, obtained after applying 

tests of the NIST suite on the two binary sequences 

produced by fT in conjunction with the proposed 

discretization method, are presented.  

Table 3. NIST results for bitstream_A 

# statistical test 
passing  

ratio 

p 

value 
Obs. 

1 Frequency 0.900555 0.993 S 

2 Block frequency 0.980010 0.994 S 
3 Cumulative sums (fwd) 0.874548 0.987 S 

4 Cumulative sums (rev) 0.816537 0.988 S 

5 Runs 0.137282 0.990 S 
6 Longest run 0.935716 0.992 S 

7 Rank 0.366918 0.985 S 

8 FFT 0.964295 0.984 S 
9 Non-overlapping template 0.401199 0.991 S 

10 Overlapping template 0.171867 0.991 S 

11 Universal 0.102526 0.988 S 
12 Approximate entropy 0.334538 0.994 S 

13 Random excursions 0.922036 0.985 S 

14 Random excursions variant 0.551026 0.985 S 

15 Serial (1) 0.224821 0.987 S 

16 Serial (2) 0.262249 0.991 S 

17 Linear complexity 0.202268 0.990 S 

Table 4. NIST results for bitstream_B 

# statistical test 
passing  

ratio 

p 

value 
Obs. 

1 Frequency 0.837274 0.991 S 
2 Block frequency 0.972253 0.990 S 

3 Cumulative sums (fwd) 0.778587 0.985 S 

4 Cumulative sums (rev) 0.782463 0.987 S 
5 Runs 0.101988 0.991 S 

6 Longest run 0.693142 0.990 S 

7 Rank 0.433590 0.993 S 
8 FFT 0.954154 0.987 S 

9 Non-overlapping template 0.440048 0.984 S 

10 Overlapping template 0.105305 0.994 S 

11 Universal 0.588307 0.988 S 
12 Approximate entropy 0.277585 0.992 S 

13 Random excursions 0.629501 0.986 S 

14 Random excursions variant 0.495347 0.985 S 
15 Serial (1) 0.265567 0.990 S 

16 Serial (2) 0.244259 0.991 S 

17 Linear complexity 0.326749 0.986 S 

Analyzing the results summarized in the two 

remembered tables it can be concluded that p-values 

for each statistical test are greater than 0,0001 and 

apear uniformly distribuited in the interval [0, 1). 

Adding the fact that computed proportions for each 

test lies inside the confidence interval, bitstreams 

generated with the proposed method have very good 

cryptographic properties. 

4.4. Complete statistical testing 

Furthermore, considering all possible codings (6) of 

the intervals defined by the four thresholds (7) and 

using the rule (8), for the interpretation of each 

lexicographically generated permutation, numerical 

experiments (i.e. CrypTool, VRA, respectively the 

NIST standard battery tests) were performed on all 

possible permunations (9).  

Each bitstreams pair, i.e. corresponding to each 

lexicographic permutation, subjected to same testing 

methodologies provides similar results, making the 

proposed, multi-level, discretization method suitable 

for cryptograohic applications, regardless on the 

encoding of thresholds. 
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i.e. σ12 → [0, 0.25] is coded as 11, [0.25, 0.50] as 00, 

[0.50, 0.75] as 10 and [0.75, 1] as 01. 

(9) 

 

{a, b, c, d}, {a, b, d, c}, {a, c, b, d}, {a, c, d, b} 

{a, d, b, c}, {a, d, c, b}, {b, a, c, d}, {b, a, d, c} 

{b, c, a, d}, {b, c, d, a}, {b, d, a, c}, {b, d, c, a} 

{c, a, b, d}, {c, a, d, b}, {c, b, a, d}, {c, b, d, a} 

{c, d, a, b}, {c, d, b, a}, {d, a, b, c}, {d, a, c, b} 

{d, b, a, c}, {d, b, c, a}, {d, c, a, b}, {d, c, b, a} 
CONCLUSIONS 

The desiderate was to achieve a higher / multiple 

flow of bits, much faster (i.e. speaking in terms of 

computational time), in order to use them for secure 

cryptographic application and/or other specific tasks 

such as generation of data streams for the study of 

traffic within WSNs, ATM or Telecom networks and 

stochastic computing. 

In these sense, a new computational method for the 

transformation of real number chaotic sequences into 

multiple bitstreams, was proposed. For testing its 

viability for remembered applications one of the most 

popular maps was used: the tent map. 

Wishing to preserve statistical properties of the 

newly formed multiple bitstreams, more than one 

exhaustive testing process of their randomness was 

performed, using specific/borrowed statistic suites. 

The results of statistical testing are encouraging and 

show that the proposed discretization method can be 

used for the development of secure cryptographic 

applications and other specific tasks. 

As future work, actual usage of newly generated 

bitstreams in stochastic computing or in the study of 

traffic within WSNs and testing of the discretization 

method over others dynamical systems (e.g. cubic 

map, coupled chaotic maps etc.) is in the author’s 

interest. 
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