
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recommended for publication by Adrian Filipescu

19

SPREAD DATA STORAGE - A MEANS OF STORING IN INTERNET

Marcel Danilescu
1

Viorel Mînzu
2

1
University "Dunărea de Jos" Galați

2
University "Dunărea de Jos" Galați

Abstract. Recent years have led to the development of new data storage solutions,

moving their local storage, to the storage in cloud (Internet). In this case, data loss raises

greater problems, since there it is not able to seek recovery in time due to the

impossibility of direct access to hardware for storage. The purpose of this paper is to

present a method of data storing that allows them availability and recovery.

Keywords: data recovery, master/slave node, parity, algorithm, storage.

1. CONCEPT AND TERMS

One of the main requirements of a computing

system is the fault tolerance. This involves data

availability, accuracy and possibility of their

recovery in case of software or hardware failure

(failure of the storage media or interruption of

connections with storage media).

In general, Internet data storage is beneficial,

because of creating an environment that allows

remote backup data recovery in the presence of

failure or local disaster.

In making storage of local data in a node in the

Internet, there are involved the following elements:

• the connection between client and node.

• hardware equipment in the node.

• software (operating system and

applications) of node

The occurrence of damage to any of these elements

that contribute to the backup process, leads to

blocking of storage service.

Over the time, there were research about local data

storage, developing data recovery technologies in

case of accurance to any breakdown in storage

hardware, achieving different architectures and

different recovery algorithms, such as :

• RAID architectures (David A. Patterson, 1998)

(Michael Stonebraker Gerhard A, 1990)

• simple parity algorithm (Moon, 2005)

(Morelos-Zaragoza, 2006)

• Hamming code (Moon, 2005) (Morelos-

Zaragoza, 2006)

• Reed-Solomon code (Moon, 2005) (Morelos-

Zaragoza, 2006)

• Double Diagonal Parity (Chris Lueth, 2010)

• EvenOdd (Mario Blaum, 1995)

• Parity shared (Sara Chaarawi, 2011)

RAID-6 architecture, double diagonal parity,

EvenOdd, allow data recovery in the event of two

faults occurring simultaneously in the storage

system.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

20

Unfortunately, these methods, once implemented,

do not allow scalability of the system; there are

implemented for a strict number of hardware, a

priori established.

1.1. RAID simple parity

RAID 3,4,5 storage systems, involves creating a

simple parity code for data blocks stored on disk

arrays, allowing data recovery in case of

malfunction. (David A. Patterson, 1998)

The algorithm used to calculate the parity code is:

(1) abcd=p

Where a, b, c, d are elements of information

(bytes) and p parity code obtained.

Thus, in case of malfunction, recovery of lost

informationis made through the parity code,

replacing the lost item in above equation by p, and

the result is even the missing code. Example:

In case of failure of the element a:

(2) a=bcdp

This solution enables easy recovery of data on

failure of an information unit. It is easy to

implement and scalable, but in case of two

simultaneous failure, data are lost.

1.2. RAID 6

RAID 6 requires calculating a second parity code

based on Reed-Solomon algorithm, which allows

data recovery in case of two simultaneous failures.

(David A. Patterson, 1998) (Moon, 2005) (Morelos-

Zaragoza, 2006)

Algorithm is of the form:

(3) ci,jdi,j =pi

For the particular case where c1,j =1 and the

maximum value of j is 4, then we note d1,1=a

d1,2=b d1,3=c d1,4=d , p1=p and get :

(4) a  b  c  d = p

Recovery is slow because of laborious calculations

for each disk; the disk array can not exceed a total

of 16 disks and is not scalable.

1.3. Hamming Code

Hamming code ECC (David A. Patterson, 1998)

(Morelos-Zaragoza, 2006) was used for RAID 2,

but because of laborious calculation and low

recovery speed is now used only for RAM (ECC).

1.4. EvenOdd algorithm

In 1994, a team from IBM has created EvenOdd

algorithm (Mario Blaum, 1995), which allows

adding a second parity byte at a simple parity

algorithm used by RAID5.

This is an algorithm that provides ease of

implementation, speed parity calculation and speed

recovery, unlike Reed-Solomon implementation

which is slow.

In the following we present EvenOdd coding

principle.

Be a set of disks m+1, m is in our case equal to

7.

We will use m-1 disks for data storage; disks m

and m+1will be used for parity storage.

Figure 1 Implementation architecture of

the EvenOdd algorithm

Parity of P type is linear parity.

S-type parity is additional parity, calculated as the

parity of the inverse of diagonals of the elements

ai, j where:

(5) Sn =ai,jal,t, where i(j,1) ,

j (n,i) ,l(n+1,m-2),

t(m-2,n+1)

In the above figure, it can be seen marked with

color, diagonals participating in creating Sn parity.

1.5. Diagonal Parity RAID algorithm (RAID-DP)

In 2006 (Chris Lueth, 2010) Network Appliance

(NetApp) created RAID-DP algorithm, which is

implemented in storage devices it produces.

Algorithm, mainly, resembles EvenOdd algorithm,

but additional parity calculation is performed on

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

21

diagonals parallel with the main diagonal,

introducing in additional parity calculation, the

simple parity calculated along a row.

Figure 2 Implementation architecture of the RAID-

DP linear parity algorithm

Matrix for parity calculation is m-1. m is a prime

number (in this case 5), and after diagonal parity

calculation of m-1 elements, parity is stored in

field DP.

Figure 3 Implementation architecture of

the RAID-DP diagonal parity algorithm

Recovery algorithm takes into account the first line

which has two diagonal parity errors. The error is

rebuilt with DP. After getting the lost field, the

error is recovered from the linear parity P.

1.6. Data storage using common parity

In 2011, Sara Chaarawi and others (Sara Chaarawi,

2011) have published an algorithm that uses only

simple parity and allow lost data recovery.

It uses a disk array, which has calculated the

correspondent parity for each line. Additional is

calculated parity

Q = P0 P1

If errors occur on any two disks, there can be easily

restored in the following conditions:

• not to fail two disks on same RAID line, plus Q

disk;

• not to fail three disks from the same line.

2. SOLUTION APPROACH

To store in the Internet, we proposed a system for

nodes scalability and increase redundancy for data

recovery, while maintaining a reasonable

relationship between: storage efficiency, storage

capacity and increased speed in data recovery case

of failure of the storage system.

Analysis of previous storage methods led to

reconsideration of storage methods and achieving

data redundancy. Also, inability to increase

storage scalability for data retrieval systems that

allow data recovery when two failures occurs,

led us to consider ad-hoc network topology

analysis, created in the Internet.

Internet is created on a mesh type topology,

which allows making any particular topology in

private networks created on this support.

To store backup data we need a node to perform

storage and a backup solution that would solve

the access to data if the primary storage node

would be unreachable.

A first solution could be a mirror copy of data from

node. This would be similar to RAID1.

Figure 4. Mirror backup

Such an approach ensures a high recovery rate and

if the primary node fails, the secondary node can

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

22

access the data, being promoted as the primary

node. But if both nodes fails, data access is

impeded and the data can be lost.

To ensure the data on failure of two nodes, we

analyzed computer network topologies that can be

performed and algorithms that can be used.

Algorithms RAID 6, RAID-DP, EvenOdd, or

common (shared) parity, imply the use of a simple

parity algorithm and a second calculation method of

an additional parity that allow recovery of stored

data. Yet, these algorithms have some

inconvenience: increased storage duration,

implementation is slow and the system is not

scalable.

Providing access to data if a second server fail, has

led to an architecture that allows implementation of

simple parity for the second server (the mirroring),

which permits data recovery, in case of failing of

the second server.

Figure 5 Basic structure

Thus, we come to create a hierarchical topology,

which allows data recovery if two nodes fail (with a

relatively high recovery rate because the algorithm

involved), consisting of a main server and at least 3

servers involved in redundant data storing from the

main server. Minimizing the number of servers

allows increased data transfer speed between them,

and recovery.

Figure 2 shows the basic structure for storing data.

We have a master node, which has 3 slave nodes.

Files are stored on the master node A.

Therefore, we can say the following.

Definition. Define as a hierarchical-redundant

storage space, a space consisting of a master

storage node and at least 3 slave storage nodes,

where for  a  A  b, c, d which satisfies

the following conditions (1):

(6) a = b + c

(7) b  c = d

where a, b, c, d are elements of stored

information.

If b, c, d are bytes then a is the size of 2 bytes.

Meaning for any file A stored in node A, there are

three files B, C, and D created from file A, which

have size and satisfy the relationship b  c = d.

At this point we have a storage node A, and 3

replication nodes using simple parity.

Thus, if any two of the four servers fail, data is

recovered.

 If nodes A and B fail, then A data recovery are

obtained as follows:
(8) a = c  d + c for b = c  d

 If nodes A and C fail, then A data recovery

are obtained as follows:
(9) a=b+bd and c= bd

 If nodes A and D fail, then A data recovery

are obtained as follows:
(10) a=b+c and d=cd

We can extend this architecture, and convert each

slave node in master node and other nodes

remaining slave. Thus we obtain the following

architecture (figure 6):

Figure 6 Complete architecture

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

23

Currently we have 4 master nodes and 4 slave

nodes, with only 4 nodes.

Extending the above argument, we can say that any

two nodes may fail, the other two nodes would

recover. Actually, it would be an application of the

above topology on four nodes, for each one in part.

To refer to this solution, we use as the storage cell.

Increasing the number of nodes participating in the

creation of a storage cell does not improve in any

way the recovering performance of lost data in the

cell; the maximum number of nodes that can be

recovered is still two.

Increasing the number of errors that can be

recovered

In the situation where we have two independent

storage cells, can be put in relation with them a

third storage cell, which would allow the creation

of redundancy between the two storage cells.

Such an architecture is presented below in figure 7.

Figure 7. Example of application for 3-cell storage

 Equations (2) that define the relationships between

nodes in different cells, would be:

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

24

(11) • A'1 A'2 = A3

(12) • B'1  B'2 = B3

(13) • C'1 C'2 = C3

(14) • D’1 D’2 = D3

A1, A2, B1, B2, C1, C2, D1, D2 constitutes the

information from slave nodes of the master nodes.

From equations (1) and (2) results that every 6

nodes would fall, could be restored from the

information stored in the other 6. This leads to the

conclusion that if a storage cell is damaged and half

of another cell, the data can be recovered in full.

At this point, hierarchical topology first designed

for storage, turned into a hybrid topology, by tying

in ring the component nodes.

2.1. Storage-recovery algorithm implementation

In order to achieve data-storage as described before,

we used a simple parity algorithm. Its

implementation was done in different ways to

check the speed of storage-recovery.

Storage:

A. Reading source file; dividing into components

(files) to be saved on additional storage servers;

parity calculation and storing them in parity file.

B. Reading the source file into a memory buffer;

parity calculation; write the read data and

calculated parity to files.

To restore data, check existing sources, and:

A. If component files exists (resulted from the

source file spliting), restoring the source file.

B. If one of the component files missing, is

calculated content of the missing file using the

remained component file and the parity file.

Implemented algorithms are presented in Annex.

2.2. Storage analysis

To analyze the effectiveness of the proposed

solution, we define the following:

Es = maximum storage efficiency (percentage of

actual storage capacity required to store initial data

of the total storage capacity allocated)

Ps = lost storage capacity, meaning storage capacity

lost by implementing redundancy.

Cs = the storage capacity used from the total

capacity available.

Ns = storage nodes theoretical necessary from the

real storage nodes (implemented).

Name of the maximum efficiency of storage is the

ideal case where all data blocks are used. In reality

it can not be achieved for various reasons

(temporary files, caches, etc).

We believe that we have, in each node, N blocks of

memory allocated on a hard drive for data storage.

Storage analysis for basic architecture

Do we assume that the file Fa occupies in node A,

M blocks of data. Then files Fb, Fc, Fd occupies

each M/2 blocks of data. Therefore, the number of

blocks needed to implement redundancy for the file

Fa is 2.5*M.

In the ideal case when use all of N blocks for

storing in node A, to implement redundancy will

result a necessary of more 1.5*N blocks.

(15) Es=  Es=0,4

(16) Ps=  Ps=0,375

(17) Cs=  Cs=0,625

(18) Ns=  Ns=1

Notice that the redundancy implementation nodes

we have unused storage capacity. To optimize

storage Cs, should be 1, Ps should aim to 1, to 1 Es

should aim to 1 and Ns should aim to higher values.

From the above analysis, result that would be

reduced storage capacity that is allocated to

implement redundancy. If Node B = Node C =

Node D = 0.5 A, then

(19) Ps=  Ps=0,6

And

(20) Cs=  Cs=1

This means judicious use more storage capacity

than the previous solution.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

25

Storage analysis for advanced architecture

In this hybrid topology, we have 4 nodes with 4

nodes master slave.

Each master node is slave node to implement

redundancy for another master node. This results in

a reduction in the number of nodes from 16 to 4.

Suppose we have W storage blocks for each master

node. For nodes master to be supported by the slave

nodes, it assumes that each node should supplement

with 50% of storage capacity of a master node.

Thus, for advanced architecture, each node will

have at least 2.5*W. In these conditions

(21) Ns=  Ns=4

Advantages of advanced architecture

Advantages of this solution are:

 The possibility of easy data recovery for 4

nodes, where at most two nodes are faulty

 High speed upload and download for file

stored in the master node

 Easy scalability of the system, and could

easily add a new node, we need only that the

equations of data storage nodes to add new

slave node.

 By creating nodes distances, increasing the

possibility of recovery is obtained for natural

disasters, regional.

Analysis of advanced storage architecture

By implementing this solution, r4ise the number of

nodes that can fail, allowing the failure of one cell

and other two nodes of the other two cells.

(22) Ns= Ns=2,66

because we have implemented only two master

storage cells and one slave storage cell. If we want

to improve the ratio, then we can implement and

third master node storage solutions.

3. CONCLUSIONS

Basically, with storage cells, we can implement

different storage solutions and data recovery,

becoming more efficient, but with specification that

will increase allocate storage capacities to

implement redundancy.

4. REFERENCES

Chris Lueth, Jay White. 2010. RAID-DP: NetApp

Implementation of Double-Parity RAID for

Data Protection. media.netapp.com. [Online]

2010. [Cited: 05 26, 2011.]

http://media.netapp.com/documents/tr-

3298.pdf.

David A. Patterson, Garth Gibson, Randy H. Katz.

1998. A case for redundant arrays of

inexpensive disks (RAID). Chicago, Ilinois :

ACM, Proceedings of the 1988 ACM

SIGMOD international conference on

Management of data, 1998. pp. 109-116.

10.1145/50202.50214.

Doersken, Trevor. 2008. Clouds are the user-

friendly version of Grids. SYS-CON : ACM,

2008.

Lueth, Jay White & Chris. RAID-DP: NetApp

Implementation of Double-Parity RAID for

Data Protection. media.netapp.com. [Online]

[Cited: 05 26, 2011.]

http://media.netapp.com/documents/tr-

3298.pdf.

Luis M. Vaquero, Luis Rodero-Merino, Juan

Caceres, and Maik Lindner. A Break in the

Clouds. 2009. A Break in the Clouds-Towards

a Cloud Definition. 2009.

Mario Blaum, Jim Brady, Jehoshua Bruck, Jai

Menon. 1995. EVENODD: An Efficient

Scheme for Tolerating Double Disk Failures in

RAID Architectures. IEEE Transaction on

Computers. 1995, Vols. 2, pp. 192-202, 44.

Michael Armbrust, Armando Fox, Rean Griffith,

Anthony D. Joseph, Randy Katz, Andy

Konwinski,Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, and Matei Zaharia. 2010. A

view of cloud computing. New York, NY,

USA : ACM, 2010.

Michael Stonebraker Gerhard A, Schloss. 1990.

Distributed RAID - A New Multiple Copy

Algorithm. Washington : IEEE Computer

Society, 1990. ISBN:0-8186-2025-0 .

Moon, Todd K. 2005. Error Correction Coding.

Hooboken : John Wiley & Sons, Inc., 2005.

ISBN 0-471-64800-0.

Morelos-Zaragoza, Robert H. 2006. The Art of

Error Correcting Coding. Chicehester, West

Sussex, England : John Wiley & Sons Ltd.,

2006. ISBN-13: 978-0-470-01558-2.

Sara Chaarawi, Jehan-François Pâris,Ahmed Amer,

Thomas Schwarz, Darrell D. E. Long. 2011.

SSRC: Using a Shared Storage Class Memory

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 2, ISSN 1221-454X

26

Device to Improve the Reliability of RAID

Arrays. Storage Systems Research Center.

[Online] 2011. [Cited: 09 25, 2011.]

http://www.ssrc.ucsc.edu/pub/chaarawi-

pdsw10.html.

SSRC: Using a Shared Storage Class Memory

Device to Improve the Reliability of RAID

Arrays. Storage Systems Research Center.

[Online] [Cited: 09 25, 2011.]

http://www.ssrc.ucsc.edu/pub/chaarawi-

pdsw10.html.

Tudoran, Radu. 2011. Data storage in clouds. s.l.

IRISA,2011.

ftp://ftp.irisa.fr/local/caps/DEPOTS/BIBLIO20

11/Tudoran_Radu.pdf.

