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Abstract. Recent years have led to the development of new data storage solutions, 

moving their local storage, to the storage in cloud (Internet). In this case, data loss raises 

greater problems, since there it is not able to seek recovery in time due to the 

impossibility of direct access to hardware for storage. The purpose of this paper is to 

present a method of data storing that allows them availability and recovery. 
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1. CONCEPT AND TERMS 

One of the main requirements of a computing 

system is the fault tolerance. This involves data 

availability, accuracy and possibility of their 

recovery in case of software or hardware failure 

(failure of the storage media or interruption of 

connections with storage media). 

In general, Internet data storage is beneficial, 

because of creating an environment that allows 

remote backup data recovery in the presence of 

failure or local disaster. 

In making storage of local data in a node in the 

Internet, there are involved the following elements: 

• the connection between client and node. 

• hardware equipment in the node. 

• software (operating system and 

applications) of node 

The occurrence of damage to any of these elements 

that contribute to the backup process, leads to 

blocking of storage service. 

Over the time, there were research about local data 

storage, developing  data recovery technologies in 

case of accurance to any breakdown in storage 

hardware, achieving different architectures and 

different recovery algorithms, such as : 

• RAID architectures (David A. Patterson, 1998) 

(Michael Stonebraker Gerhard A, 1990) 

• simple parity algorithm (Moon, 2005) 

(Morelos-Zaragoza, 2006) 

• Hamming code (Moon, 2005) (Morelos-

Zaragoza, 2006) 

• Reed-Solomon code (Moon, 2005) (Morelos-

Zaragoza, 2006) 

• Double Diagonal Parity (Chris Lueth, 2010) 

• EvenOdd (Mario Blaum, 1995) 

• Parity shared (Sara Chaarawi, 2011) 

RAID-6 architecture, double diagonal parity, 

EvenOdd, allow data recovery in the event of two 

faults occurring simultaneously in the storage 

system. 
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Unfortunately, these methods, once implemented, 

do not allow scalability of the system; there are 

implemented for a strict number of hardware, a 

priori established. 

1.1. RAID simple parity 

RAID 3,4,5 storage systems, involves creating a 

simple parity code for data blocks stored on disk 

arrays, allowing data recovery in case of 

malfunction. (David A. Patterson, 1998) 

The algorithm used to calculate the parity code is: 

(1)  abcd=p 

Where a, b, c, d are elements of information 

(bytes) and p parity code obtained. 

Thus, in case of malfunction, recovery of lost 

informationis made through the parity code, 

replacing the lost item in above equation by p, and 

the result is even the missing code. Example: 

In case of failure of the element a: 

(2) a=bcdp 

This solution enables easy recovery of data on 

failure of an information unit. It is easy to 

implement and scalable, but in case of two 

simultaneous failure, data are lost. 

1.2. RAID 6 

RAID 6 requires calculating a second parity code 

based on Reed-Solomon algorithm, which allows 

data recovery in case of two simultaneous failures. 

(David A. Patterson, 1998) (Moon, 2005) (Morelos-

Zaragoza, 2006) 

Algorithm is of the form: 

(3) ci,jdi,j =pi 

For the particular case where c1,j =1  and the 

maximum value of j is 4, then we note d1,1=a 

d1,2=b d1,3=c d1,4=d , p1=p and get : 

(4) a  b  c  d = p 

Recovery is slow because of laborious calculations 

for each disk; the disk array can not exceed a total 

of 16 disks and is not scalable. 

1.3. Hamming Code 

Hamming code ECC (David A. Patterson, 1998) 

(Morelos-Zaragoza, 2006) was used for RAID 2, 

but because of laborious calculation and low 

recovery speed is now used only for RAM (ECC). 

1.4. EvenOdd algorithm 

In 1994, a team from IBM has created EvenOdd 

algorithm (Mario Blaum, 1995), which allows 

adding a second parity byte at a simple parity 

algorithm used by RAID5. 

This is an algorithm that provides ease of 

implementation, speed parity calculation and speed 

recovery, unlike Reed-Solomon implementation 

which is slow. 

In the following we present EvenOdd coding 

principle. 

Be a set of disks m+1, m is in our case equal to 

7. 

We will use m-1 disks for data storage; disks m 

and m+1will be used for parity storage. 

 

 

 

 

 

 

 

Figure 1 Implementation architecture of 

the EvenOdd algorithm 

Parity of P type is linear parity. 

S-type parity is additional parity, calculated as the 

parity of the inverse of diagonals of the elements 

ai, j where: 

(5) Sn =ai,jal,t, where i(j,1) , 

j (n,i) ,l(n+1,m-2), 

t(m-2,n+1)  

In the above figure, it can be seen marked with 

color, diagonals participating in creating Sn parity. 

1.5. Diagonal Parity RAID algorithm (RAID-DP) 

In 2006 (Chris Lueth, 2010) Network Appliance 

(NetApp) created RAID-DP algorithm, which is 

implemented in storage devices it produces. 

Algorithm, mainly, resembles EvenOdd algorithm, 

but additional parity calculation is performed on 
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diagonals parallel with the main diagonal, 

introducing in additional parity calculation, the 

simple parity calculated along a row. 

 

 

Figure 2 Implementation architecture of the RAID-

DP linear parity algorithm 

Matrix for parity calculation is m-1. m is a prime 

number (in this case 5), and after diagonal parity 

calculation of m-1 elements, parity is stored in 

field DP. 

Figure 3 Implementation architecture of 

the RAID-DP diagonal parity algorithm 

Recovery algorithm takes into account the first line 

which has two diagonal parity errors. The error is 

rebuilt with DP. After getting the lost field, the 

error is recovered from the linear parity P. 

1.6. Data storage using common parity 

In 2011, Sara Chaarawi and others (Sara Chaarawi, 

2011) have published an algorithm that uses only 

simple parity and allow lost data recovery.  

It uses a disk array, which has calculated the 

correspondent parity for each line. Additional is 

calculated parity  

Q = P0 P1

 

If errors occur on any two disks, there can be easily 

restored in the following conditions: 

• not to fail two disks on same RAID line, plus Q 

disk; 

• not to fail three disks from the same line. 

2. SOLUTION APPROACH 

To store in the Internet, we proposed a system for 

nodes scalability and increase redundancy for data 

recovery, while maintaining a reasonable 

relationship between: storage efficiency, storage 

capacity and increased speed in data recovery case 

of failure of the storage system. 

Analysis of previous storage methods led to 

reconsideration of storage methods and achieving 

data redundancy. Also, inability to increase 

storage scalability for data retrieval systems that 

allow data recovery when two failures occurs, 

led us to consider ad-hoc network topology 

analysis, created in the Internet. 

Internet is created on a mesh type topology, 

which allows making any particular topology in 

private networks created on this support. 

To store backup data we need a node to perform 

storage and a backup solution that would solve 

the access to data if the primary storage node 

would be unreachable. 

A first solution could be a mirror copy of data from 

node. This would be similar to RAID1. 

 

 

Figure 4. Mirror backup 

Such an approach ensures a high recovery rate and 

if the primary node fails, the secondary node can 
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access the data, being promoted as the primary 

node. But if both nodes fails, data access is 

impeded and the data can be lost. 

To ensure the data on failure of two nodes, we 

analyzed computer network topologies that can be 

performed and algorithms that can be used. 

Algorithms RAID 6, RAID-DP, EvenOdd, or 

common (shared) parity, imply the use of a simple 

parity algorithm and a second calculation method of 

an additional parity that allow recovery of stored 

data. Yet, these algorithms have some 

inconvenience: increased storage duration, 

implementation is slow and the system is not 

scalable. 

Providing access to data if a second server fail, has 

led to an architecture that allows implementation of 

simple parity for the second server (the mirroring), 

which permits data recovery, in case of failing of 

the second server. 

 

 

 

 

 

Figure 5 Basic structure 

Thus, we come to create a hierarchical topology, 

which allows data recovery if two nodes fail (with a 

relatively high recovery rate because the algorithm 

involved), consisting of a main server and at least 3 

servers involved in redundant data storing from the 

main server. Minimizing the number of servers 

allows increased data transfer speed between them, 

and recovery. 

Figure 2 shows the basic structure for storing data. 

We have a master node, which has 3 slave nodes. 

Files are stored on the master node A. 

Therefore, we can say the following. 

Definition. Define as a hierarchical-redundant 

storage space, a space consisting of a master 

storage node and at least 3 slave storage nodes, 

where for  a  A  b, c, d which satisfies 

the following conditions (1): 

(6) a = b + c 

(7) b  c = d 

where a, b, c, d are elements of stored 

information. 

If b, c, d are bytes then a is the size of 2 bytes. 

Meaning for any file A stored in node A, there are 

three files B, C, and D created from file A, which 

have size  and satisfy  the relationship b  c = d.  

At this point we have a storage node A, and 3 

replication nodes using simple parity. 

Thus, if any two of the four servers fail, data is 

recovered. 

 If nodes A and B fail, then A data recovery are 

obtained as follows:  
(8) a = c  d + c for b = c  d 

 If nodes A and C fail, then A data recovery 

are obtained as follows: 
(9) a=b+bd and c= bd 

 If nodes A and D fail, then A data recovery 

are obtained as follows: 
(10)  a=b+c and d=cd 

We can extend this architecture, and convert each 

slave node in master node and other nodes 

remaining slave. Thus we obtain the following 

architecture (figure 6): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Complete architecture 
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Currently we have 4 master nodes and 4 slave 

nodes, with only 4 nodes. 

Extending the above argument, we can say that any 

two nodes may fail, the other two nodes would 

recover. Actually, it would be an application of the 

above topology on four nodes, for each one in part. 

To refer to this solution, we use as the storage cell. 

Increasing the number of nodes participating in the 

creation of a storage cell does not improve in any 

way the recovering performance of lost data in the 

cell; the maximum number of nodes that can be 

recovered is still two. 

Increasing the number of errors that can be 

recovered 

In the situation where we have two independent 

storage cells, can be put in relation with them a 

third storage cell, which would allow the creation 

of redundancy between the two storage cells. 

Such an architecture is presented below in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Example of application for 3-cell storage 

 Equations (2) that define the relationships between 

nodes in different cells, would be: 
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(11) • A'1 A'2 = A3  

(12) • B'1  B'2 = B3 

(13) •  C'1 C'2 = C3 

(14) • D’1 D’2 = D3  

A1, A2, B1, B2, C1, C2, D1, D2 constitutes the 

information from slave nodes of the master nodes. 

From equations (1) and (2) results that every 6 

nodes would fall, could be restored from the 

information stored in the other 6. This leads to the 

conclusion that if a storage cell is damaged and half 

of another cell, the data can be recovered in full. 

At this point, hierarchical topology first designed 

for storage, turned into a hybrid topology, by tying 

in ring the component nodes.  

2.1. Storage-recovery algorithm implementation 

In order to achieve data-storage as described before, 

we used a simple parity algorithm. Its 

implementation was done in different ways to 

check the speed of storage-recovery. 

Storage: 

A. Reading source file; dividing into components 

(files) to be saved on additional storage servers; 

parity calculation and storing them in parity file. 

B. Reading the source file into a memory buffer; 

parity calculation; write the read data and 

calculated parity to files. 

To restore data, check existing sources, and: 

A. If component files exists (resulted from the 

source file spliting), restoring the source file. 

B. If one of the component files missing, is 

calculated content of the missing file using the 

remained component file and the parity file. 

Implemented algorithms are presented in Annex. 

2.2. Storage analysis 

To analyze the effectiveness of the proposed 

solution, we define the following: 

Es = maximum storage efficiency (percentage of 

actual storage capacity required to store initial data 

of the total storage capacity allocated) 

Ps = lost storage capacity, meaning storage capacity 

lost by implementing redundancy. 

Cs = the storage capacity used from the total 

capacity available. 

Ns = storage nodes theoretical necessary from the 

real storage nodes (implemented). 

Name of the maximum efficiency of storage is the 

ideal case where all data blocks are used. In reality 

it can not be achieved for various reasons 

(temporary files, caches, etc). 

We believe that we have, in each node, N blocks of 

memory allocated on a hard drive for data storage. 

Storage analysis for basic architecture 

Do we assume that the file Fa occupies in node A, 

M blocks of data. Then files Fb, Fc, Fd occupies 

each M/2 blocks of data. Therefore, the number of 

blocks needed to implement redundancy for the file 

Fa is 2.5*M. 

In the ideal case when use all of N blocks for 

storing in node A, to implement redundancy will 

result a necessary of more 1.5*N blocks. 

(15)  Es=   Es=0,4 

 

(16)  Ps=   Ps=0,375 

 

(17)  Cs=   Cs=0,625 

 

(18)  Ns=  Ns=1 

Notice that the redundancy implementation nodes 

we have unused storage capacity. To optimize 

storage Cs, should be 1, Ps should aim to 1, to 1 Es 

should aim to 1 and Ns should aim to higher values. 

From the above analysis, result that would be 

reduced storage capacity that is allocated to 

implement redundancy. If Node B  = Node C = 

Node D = 0.5 A, then 

(19)  Ps=   Ps=0,6  

And 

(20)  Cs=   Cs=1 

This means judicious use more storage capacity 

than the previous solution. 
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Storage analysis for advanced architecture 

In this hybrid topology, we have 4 nodes with 4 

nodes master slave. 

Each master node is slave node to implement 

redundancy for another master node. This results in 

a reduction in the number of nodes from 16 to 4. 

Suppose we have W storage blocks for each master 

node. For nodes master to be supported by the slave 

nodes, it assumes that each node should supplement 

with 50% of storage capacity of a master node. 

Thus, for advanced architecture, each node will 

have at least 2.5*W. In these conditions  

(21) Ns=   Ns=4  

Advantages of advanced architecture 

Advantages of this solution are: 

 The possibility of easy data recovery for 4 

nodes, where at most two nodes are faulty 

 High speed upload and download for file 

stored in the master node 

 Easy scalability of the system, and could 

easily add a new node, we need only that the 

equations of data storage nodes to add new 

slave node. 

 By creating nodes distances, increasing the 

possibility of recovery is obtained for natural 

disasters, regional. 

Analysis of advanced storage architecture 

By implementing this solution, r4ise the number of 

nodes that can fail, allowing the failure of one cell 

and other two nodes of the other two cells. 

(22) Ns= Ns=2,66  

because we have implemented only two master 

storage cells and one slave storage cell. If we want 

to improve the ratio, then we can implement and 

third master node storage solutions. 

3. CONCLUSIONS 

Basically, with storage cells, we can implement 

different storage solutions and data recovery, 

becoming more efficient, but with specification that 

will increase allocate storage capacities to 

implement redundancy. 
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