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Abstract: In this paper, is presented an application of the Hankel–norm approximation 

method for model order reduction, to obtain a lower order model with the same 

performance. In order to show the effectiveness of the Hankel-methodologie an 

illustrative example is considered. Based on the background theory, the algorithm was 

applied on a real-life plant consist of a waste heat recovery for thermal water supply. 

The final aim of this study is a possible synthesis of a robust controller for the 

(uncertain) industrial-heat recovery processes. 
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1. INTRODUCTION 

From a practical point of view, the responsibility of a 

control system designer is to build a system that will 

perform well under real-life conditions and 

constraints. Therefore, the designed control system 

must ensure stability and a high performance level in 

the presence of uncertainties (real environment may 

change with time, parameters can vary, unmodelled 

dynamics, etc.).  

In standard textbooks, classical frequency domain 

control design techniques have as design 

specifications only the gain margin and phase 

margin. In control engineering, the property of a 

control system to operate properly under realistic 

conditions is referred to as robustness.  

Historically speaking, the robustness issue was not 

strongly considered in the decades 1960s and 1970s. 

However, researchers as Horowitz, Houpis through 

their pioneering works, e.g. (Horowitz, 1963), have 

put a first milestone in the robustness field – the QFT 

(quantitative feedback theory). Step by step, 

researchers in analysis and design of multivariable 

(MIMO) control systems, such as A. J MacFarlane, 

H.H. Rosenbrock, Postletwhaite, (Rosenbrock, 1974; 

Postletwhaite et. al, 1981), extended the principles of 

classical control to the MIMO case in the 1970s. The 

robust control design concepts have been further 

developed in time, and in 1980s, by the work of 

Zames and Francis (Zames, 1981; Zames and 

Francis, 1983), begins the second milestone in the 

field of system robustness. Nowadays, the robust 

control procedures have evolved from the practical 

field, as initiated by the above pioneers and many 

others (e.g. Doyle, 1987; Doyle et. al, 1992; Safonov 

et. al, 1989; Chiang and Safonov, 1988). The results 

are the new paradigms which are systematic, efficient 

and elegant: 2H  control, H  optimal control, loop 

shaping control, H  optimization,  -analysis and 

synthesis etc. 

The robust controller resulting from any such 

procedure is a complex one and consequently, from 

practical reasons its order must be reduced. For a 

control system, both model reductions of initial 

orders (of the original plant model and of controller) 

obviously, are similar in procedure (Choi et. al, 1994; 
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Gu et. al, 2005; Zhou et. al, 1996; Safonov and 

Chiang, 1989). In this paper, we use an illustrative 

example to show the methodology and its efficient 

model order reduction. Although simplistic, the 

example is a sufficient numerical support to show the 

procedure and its results. 

The paper is organized as follows: the next section 

provides a description of the example employed 

throughout the exercise. The third section presents 

the theoretical background and motivations for 

developing model-order reduction techniques. The 

results are given and discussed in section four and 

some conclusions summarize the main outcome of 

this paper and point to some perspectives. 

2. SYSTEM DESCRIPTION  

The example proposed for this paper takes advantage 

of the re-use of industrial waste-heat. Metallurgical 

factories use high temperatures to melt and further 

process metals like aluminum, iron, cupper etc. 

These high temperatures can be used to heat up 

water, that later, can be sent to the cities to provide 

heating to residential areas. However, because of the 

remoteness of the factories, long pipelines have to be 

used normally without good thermal insulation, 

causing heating loses. The schematic representation 

of the system is depicted in figure 1. The hot water 

input flow Q is divided in two (or more) pipelines 

according to the parameter Alpha, and then it goes 

through 25 sections in each side. Each section has its 

own temperature because of the thermal losses. 

Finally the two pipelines join, through a mixing 

process, the output temperature of both sides. 

From a practical point of view, this system is in fact 

more interesting with input the flow ratio regulation 

(α) for controlling the temperature at the end of the 

line. However, this implies a nonlinear model, which 

is far too complex for the illustrative purpose of this 

paper and makes the target of another future 

contribution.  

Consider the distributed parameter system from 

figure 1. The energy balance for the first section is 

shown below:  

(1) 11 1 11 11( )P P inC VT C Q T T q     

Where: 

𝑞𝑛𝑚 = 𝐻𝑒𝑎𝑡 𝑓𝑙𝑜𝑤  
𝐽𝑜𝑢𝑙

𝑠
 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒𝑠 = 𝐼𝑛𝑝𝑢𝑡 

𝑇𝑖𝑛 = 𝐼𝑛𝑝𝑢𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  °𝐶 = 𝑖𝑛𝑝𝑢𝑡 

𝑇𝑛𝑚 = 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  °𝐶 = 𝑆𝑡𝑎𝑡𝑒𝑠  

𝑇𝑜𝑢𝑡  1 , 𝑇𝑜𝑢𝑡 2 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠  °𝐶 = 𝑂𝑢𝑝𝑢𝑡𝑠  

𝑄 = 𝑖𝑛𝑝𝑢𝑡 𝑓𝑙𝑜𝑤  
𝑚3

𝑠
  

𝐶𝑝 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐻𝑒𝑎𝑡  
𝐽𝑜𝑢𝑙

𝐾𝑔°𝐶
  

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  
𝐾𝑔

𝑚3
  

V = Volume  m3  

V1 = Volume in the left side 𝑚3  

V2 = Volumen in the right side [m3] 

 

Fig.1. Schematic representation for the proposed 

system. 

The ratio   is the relationship between the flows 

and volumes. It is defined in (2), and applied in (3), 

(4) and (5). 

(2) 1Q
α

Q
  

(3) 2Q
1 α

Q
   
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(4) 1V Vα  

(5)  2V V 1    

The full system can be represented as a set of 

differential equations, one for each section. They are 

presented from (6) until (13). Each one takes into 

account the temperature in the previous section, in 

order to compute the current section output. Finally, 

the total output of the system is computed in (14), as 

the mean value between the two output temperatures 

in each side. 

(6) 1 1
11 11 11

1 1 1

1
in

P

Q Q
T T T q

V V C V
    

(7) 1 1
21 11 21 21

1 1 1

1

P

Q Q
T T T q

V V C V
    

(8) 1 1
31 21 31 31

1 1 1

1

P

Q Q
T T T q

V V C V
    

 

(9) 1 1
251 1 241 251 251

1
out

P

Q Q
T T T T q

V V C V
     

(10) 2 2
12 12 12

2 2 2

1
in

P

Q Q
T T T q

V V C V
    

(11) 2 2
22 12 22 22

2 2 2

1

P

Q Q
T T T q

V V C V
    

(12) 2 2
32 22 32 32

2 2 2

1

P

Q Q
T T T q

V V C V
    

 

(13) 2 2
252 2 242 252 252

2 2

1
out

P

Q Q
T T T T q

V V C V
     

(14) 1 2

2

out out
out

T T
T


  

The states for the state space notation are presented 

from (15) until (20). The system inputs are shown in 

(21). 

(15) 1 11x T  

(16) 2 21x T  

(17) 25 251 1outx T T   

(18) 26 12x T  

(19) 27 22x T  

(20) 50 252 2outx T T   

(21) 

11

21

12

22

252 51 2

inT

q

q

u

q

q

q


  

From here it follows the state space matrices A, B, C 

and D, given below. 

(22) 

1

1

1 1

1 1

2

2

2 2

2 2

2 2

2 2 50 50

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

Q

V

Q Q

V V

Q
A

V

Q Q

V V

Q Q

V V












 

(23) 
[1,1] [1,2]

[ 2,3]

[ 26,1] [ 26,27]

[ 27,28]

[50,51]

1

1 1

1

2

2 2

2

2
50 51

1
0 0 0 0 0

1
0 0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0 0

1
0 0 0 0 0 0

P

P

P

P

P

Q

V C V

C V

Q
B

V C V

C V

C V






















 

(24) 
[1,1] [1,24] [1,25] [1,26] [1,50]

[2,1] [2,24] [2,25] [2,26] [2,50] 2 50

0 0 1 0 0

0 0 0 0 1
C





 

(25) 

50 51

0 0

0 0

D



  

The model represented by (22)-(25) is the full model 

of the system, of order 50, which will be reduced 

using the proposed technique in the following 

sections. 
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3. CONTEXT OF LOW-ORDER CONTROLLERS  

3.1. Theoretical Background. 

Today, a mathematical model (MM) derived to 

represent the system dynamics for a plant is more 

complex compared to the same model which could 

have been obtained several decades ago. The reasons 

are: i) increasing the performance specifications, ii) 

increasing demands on productivity, iii) increasing 

demands on quality, iv) increasing demands on 

accuracy of modeling, etc. For these MM (often 

MIMO) which are more complex and therefore more 

accurate, the obtained controllers are of the same 

complexity and usually numerically high-order.  

However, complex models are not always required in 

order to achieve good control performance. For 

example, an unfortunate fact is that optimization 

methods (i.e. procedures based on H , 2H  H  

control,  - analysis and synthesis, etc) tend to 

produce controllers with an order at least as many 

states as the plant model (Choi et. al, 1994; Gu et. al, 

2005; Zhou et. al, 1996; Safonov and Chiang, 1989). 

These high-order controllers are difficult to 

implement, have a high cost, low numerical 

reliability, many maintenance problems etc. 

Because in control engineering practice a good 

controller often requires simple and low order 

functions, the remainder of the paper enumerates the 

main methods to find less-complex, low-order 

approximations for plant and controller models (Choi 

et. al, 1994; Gu et. al, 2005; Zhou et. al, 1996; 

Safonov and Chiang, 1989; Safonov et. al, 1987; 

Skogestad and Postlethwaite, 1996; Balas et. al, 

1995). 

Thus, to obtain a lower-order plant model or a lower-

order controller for a high-order plant in literature 

one can find the following logical ideas: (a) plant 

model reduction and just after controller design; (b) 

first step is controller design and the second is 

controller- order reduction; (c) a direct design of low-

order controllers. As in all approaches with many 

possibilities, each of them has different advantages 

and drawbacks. However, only the above mentioned 

(a) and (b) methodologies are useful within the 

robust control field. 

3.2. When should we employ a model-order 

reduction? 

Not all designs of robust controllers for high-order 

plant or relatively high-order plant (i.e. for all 

complex systems) require model reduction. However, 

there are some cases in which this step is mandatory:  

(i) – a smaller size model but representative (with 

dynamics preserved) is desirable for the control 

designer to speed up the simulation process in design 

stage;  

(ii) - a smaller size model but representative is 

necessary be used to obtain some specifications;  

(iii) – as above, when the resultant controller using 

an optimization method (based on H , 2H ,  ) is 

one with an order at least as many states as the plant 

model, i.e. greater than needed, and as a result they 

are hard to be implemented in practice. 

3.3. Classes of Approximation Methods. 

Hitherto, there are a manifold of methods available 

for model-order reduction. From these, for stable 

systems only, the most used three methods, based on 

absolute – error approximation, are:  

(a)-Balanced Truncation-method which gives a good 

approximation over high-frequency ranges;  

(b)-Singular Perturbation Approximation (or 

Balanced residualisation) - method which perform 

better approximation of Bode characteristic over low-

frequency and medium frequency ranges; and 

(c)-Hankel-Norm Approximation - method which 

usually perform better approximation at high 

frequency.   

When a system ( )G s  is unstable, first one can apply 

modal decomposition to find a stable ( )stG s  and an 

unstable part ( )unstG s  (all poles in 

RHCP), ( ) ( ) ( )st unstG s G s G s  . It is then possible 

for ( )G s  to be reduced to ( )stREDG s  with any from 

above methods. Another method applicable to the 

unstable systems is the one obtained through 

reduction of normalized coprime factors of the 

system. 

When a reduced-order model is necessary for a 

practical application to approximate equally well the 

Bode magnitude over the whole frequency range, the 

method used is a stochastic one, namely balanced 

stochastic truncation (BST) (Desai and Pal, 1984; 

Green, 1988). 

Finally, in those cases when it is necessary not only 

to obtain a particular reduced-order controller, but 

also some design specifications of the closed-loop 

system, the controller-order reduction problem can be 

better formulated in a frequency framework, i.e. as a 

frequency-weighted model reduction (Gu et. al, 

2005). 
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3.4. Practical model reduction methods. 

Two categories from above methods are to minimize 

the H  norm between the full order model and the 

reduced order model, ( ) ( )REDG s G s


 . 

The first algorithm for model approximation and 

order reduction, controls the absolute approximation 

error, and is based on the Hankel singular values of 

the system. In this case (the additive error), the 

reduction algorithm returns a reduced order model 

REDG  of the original model G  with a bound on the 

error, the peak gain across frequency. In (Glover, 

1984) is shown that the reduced order model 

( )REDG s  of the original model ( )G s  has a bound on 

the infinity norm of the error, ( ) ( )REDG s G s


 , 

which must satisfy the inequality 

(26) 
1

( ) ( ) 2
n

RED i

k

G s G s 




    

where i  is i
th

  Hankel singular value of the original 

system G . 

The second algorithm for model approximation and 

order reduction, controls the multiplicative (or 

relative) approximation error, and is based on the 

Hankel singular values of the system. In the latter 

case (the multiplicative (relative) error), the reduction 

algorithm returns a reduced order model REDG  of the 

original model G  with a bound on the relative error 

 1( ) ( ) ( )REDG s G s G s


 , which must satisfy the 

inequality, (Zhou et. al, 1996): 

(27)   2

1

( ) ( ) 1 2 1 1
n

RED i i i

k

G s G s   




     

 

If in control theory, the eigenvalues ( )i  show the 

system stability, in robust control the Hankel singular 

values ( )H  show the "energy" of each state in the 

system. The idea is to keep (only) larger "energetic" 

states of a system, i.e. states which preserves most of 

the system characteristics (as stability, frequency and 

time responses etc).  

Most model reduction techniques from software 

packages such as MATLAB or Slicot, used in 

practical applications, are based on the Hankel 

singular values (HSVs) of a system. The HSVs can 

obtain a reduced order model that preserves the 

majority of the system dynamic characteristics (see 

above idea). For a stable state-space system (A, B, C, 

D), its HSVs are defined, (Glover, 1984), as 

(28)   
1/2

H i  PQ  

where P  and Q  are Controllability and 

Observability Grammians satisfying following 

Lyapunov equations: 

(29) T T  AP PA BB  

(30) T T  A Q QA C C  

As a conclusion, for practical applications, the most 

used model reduction methods are: (a) absolute-error 

approximation (or additive error method), and (b) 

relative-error approximation (or multiplicative error 

method). In both of the above categories, the reduced 

order model has: in (a) - an additive error bounded by 

an error criterion and in (b) - a multiplicative (or 

relative error) bounded by an error criterion. In both 

methods, the error is measured in terms of peak gain 

across frequency, i.e. H  norm, and the error 

bounds are a function of the neglected Hankel 

singular values, ( ) ( )REDG s G s


 . In other words: 

performance preservation indicates that the H  

norm bound of the closed loop transfer function with 

reduced-order controller is not greater than the H  

norm bound of the closed loop transfer function with 

full order controller. In any case from the two above, 

is assumed additive, respectively multiplicative 

perturbation to the closed loop transfer function, to 

obtain sufficient conditions for performance 

preservation. 

4. RESULTS AND DISCUSSIONS 

In this section we apply the method described in 

section 3 on the model from section 2. Figure 2 

depicts the Bode characteristic of the full system 

from figure 1.  
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Fig.2.  Bode Plot of the full-order system from figure 

1, with 25 states in one branch. 

The application of the Hankel matrix decomposition 

delivers the information that of the total of 50 states, 

only 16 are dominant, as shown in figure 3 below. 

From figure 3, one may observe that the number of 

states with high energy in the Hankel singular value 

matrix can be reduced to 6, while preserving the 

original dominant dynamic characteristics of the 

original system from section 2. Figure 4 depicts these 

6 dominant states. 

0 10 20 30 40 50 60
0

5

10

15

20

Order

a
b

s

Hankel Singular Values

 

Fig.3.  The result of the Hankel matrix 

decomposition in singular values, suggesting a 

lower order model from the full one with 50 

states.  
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Fig.4.  Selection of the 6 dominant states minimally 

necessary to preserve the dominant dynamics of 

the original system over one branch of figure 1 

computed through the first method (additive 

error method).  

Method 1: In order to realize the reduced model, we 

use the absolute error method (also known as 

additive error method). We therefore apply a 

balanced truncation algorithm, by means of the 

Matlab
(R)

 function balancmr. This method has the 

advantage that the error introduced by the remaining 

states (25-6=19) is uniformly minimized in the 

frequency interval of interest. From the Bode plot 

(not shown) it can be observed that the method works 

well in the low frequency range. However, above 

0.5rad/s, the reduced order model does not capture 

well the original dynamics of the system. 

Method 2: We also employ a second method, namely 

that of relative error (also known as multiplicative 

error method). Such algorithm employs a balanced 

stochastic truncation (Schur method) and is very 

effective for all kinds of processes (linear, nonlinear, 

continuous or discrete). The Matlab
(R)

 function which 

applies this method is bstmr. The algorithm 

computes the infinity-norm of  1M M Mr


 , 

hence it may cause numerical issues if the gain is 

close to 0dB (not in our case). Figure 5 depicts the 

selection of the 8 dominant states and from the Bode 

plot (not shown) we also conclude that the low 

frequency range is well approximated. 
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Fig.5.  Selection of the 8 dominant states minimally 

necessary to preserve the dominant dynamics of 

the original system over one branch of figure 1 

computed through the second method 

(multiplicative error method).  

However, when results from both methods are 

compared in terms of time-domain (i.e. step 

response), they deliver unstable results. Therefore, 

we apply one more step and select 7 states with a 

balanced truncation method for both additive and 

multiplicative error methods. The Bode plot result is 

given in figure 6. The step response is given in figure 

7 for the methods employed, where is shown clearly 

that the additive error method outperforms the 

multiplicative error method. 
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Fig.6. Bode plot of the reduced order model with 7 

states.  
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Fig.7.  Step response of the original method and the 

reduced methods. Notice that the reduced model 

with additive error method outperforms the 

multiplicative error method result.  

 

5.  CONCLUSIONS  

To conclude, we have presented in this paper an 

overview of simple yet effective methods for model 

order reduction. The next objective is to test these 

methods on a nonlinear system (through linearization 

techniques) and design robust controllers. 
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