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Abstract:  Model reference adaptive control (MRAC) of three-phase induction machine 
in rotor field coordinated is proposed in this paper. The proposed adaptive structure is in 
direct form, such that the controller parameters are obtained on-line. The adaptive 
mechanism of the parameters is obtained by additive composing of two terms: the first 
will support a gradient adjustment law and the second will comport an adjustment that 
includes a sigmoid function specific for variable structure control. The last component 
improves the transient and steady state response by eliminating the small oscillations of 
the closed loop response around the equilibrium state in order to obtain a zero tracking 
error. The adaptive mechanism assures the robustness to the external disturbances and 
to the unmodeled dynamics. Matlab/Simulink based simulation results will show the 
effectiveness of the proposed solution. 

Keywords: rotor field oriented, model reference adaptive control, induction motor, 
Matlab/Simulink. 

 

1. INTRODUCTION 
 
High performance electric drive systems require a 
very accurate knowledge of the electrical machine 
parameters. From parameter variation point of view, 
due to the inflexible conventional methods, i.e. no 
load and locked rotor tests (IEEE Std, 2004), the on-
line parameter identification methods are more 
advantageous. The recursive least square 
identification algorithm is the most used method 
(Cirrincione, et al., 2003; Netto, et al., 2004). 
Anyway, in order to obtain the initial conditions of 
the parameters, the classical tests must be done. In 
order to avoid the above mentioned disadvantage, a 
modern technique based on MRAC (Filipescu, 1994; 
Ioannou, and Fidan 2006) of a vector controlled 
three-phase induction machine is proposed in this 

paper.  The reference model response is compared 
with the speed of the three-phase induction motor, 
and the tracking error is used in order to adjust the 
control parameters (Cheng-Hung Tsai, and Yeh, 
2009; Azzolin, and Gründling, 2009; Li, 2011).  

The MRAC system guarantees the asymptotic 
cancelation of the tracking error, therefore obtaining 
the perfect matching of the three-phase IM response 
with the reference model. The paper is structured as 
follows: the mathematical model of the three-phase 
induction machine in rotor field oriented reference 
frame is presented in Section 2, the MRAC in direct 
form is widely described in Sections 3 and 4, and the 
corresponding simulation results are provided in 
Section 5. 
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2. MATHEMATICAL MODEL OF THE VECTOR 

CONTROLLED THREE-PHASE INDUCTION 
MOTOR 

 
The mathematical model of the induction motor 
driven in rotor field coordinates frame, with the 
assumption of maintaining rotor magnetizing current 
at constant value (Gaiceanu, et al. 2000) is presented 
in standard form of the state space: 
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in which: imR = isd -  the magnetizing current and the 
flux component current, isq- the torque component 
current, m - the instantaneous mechanical angular 
velocity of the rotor, T l - load torque of the induction 
motor, q- the angular position of the rotor field, J- the 
combined inertia of the motor and load, Fv- the 
viscous friction coefficient, M- mutual inductance 
between the stator and rotor d, q equivalent windings, 
R - the rotor time constant, R - the rotor leakage 
factor, p- the number of pole pairs, Km- torque 
constant. 

3. MODEL REFERENCE ADAPTIVE CONTROL 
 
The transfer function of the dynamical system (1) is 
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in which: 
 the degree of the monic polynomials Np(s) and 
Dp(s) are mp, and  np respectively; 
 the sign of the gain Kp is known; 

 the relative degree  pp  of Hp mnn *
p(s) is 

known. 
 
The transfer function of the reference model is given 
by 
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in which: 
 the degree of the monic Hurwitz  polynomials 
Nm(s) and Dm(s) are pm and  nm,  respectively; 

 

ee is presented as follows. 

4

 the relative degree **
pm nn   in order to obtain a

zero tracking error. 
The model reference adaptive control synthesis with 
unitary relative degr

 

4. DESIGN OF THE ADAPTIVE CONTROLLER 
 
.1. The gradient adjustment law 

The filtered signals vector is 
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(Filipescu, A., 1994) 

(6) 




v

are des


 



py

u

hvv

hv

yy

o

uu

o

Λ

Λ
 

 )1()1(  pp nnΛ

the vector pnh (Filipescu, A., 1994), 

)()() 1 sUss hΛI 
 

)()()(

(
1 sYss py hΛIv

v u


 

(8) )det(s  )(sNmΛI  

For a grad adjustmen  a e following 
parameters are obtained: 

(9)

which guarantee the asymptotic ancellation of the 
tracking error 

ient t l w th

 






















0

o

0

o

0

o

0

)(

)(

)(

)(

erksign

eyksign

eksign

eksign

pggr

ppggp

ypggy

upggu





 v

v

 




o


0)(lim 0 
t

te , g  being a positive 

ller parameter vector 

constant. 

The contro

(10)  Tgrgp ttt
p

)()()   T
gy

T
gu

n
g tp ()(

2  

24 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, VOL.34, NO.2, 2011, ISSN 1221-454X 

 

inclu
1  des the subvectors and

The corresponding adaptive law is considered by a 
scalar produc vectors and v 

4.2. Vari d law

Variable structure adaptive control with parameter 
eads to a fast 

and smooth system response, but with asymptotically 
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small oscillations around the equilibrium point. 
Parameter adjustment law will include an 
approximation of sign(x) function by using a k-
sigmoid function (Filipescu, 1994; Ioannou et al., 
2006): 
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The variable structure adaptive control is given by 
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The control law parameters vector is obtained by 
adding two terms (Fig 2): 
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Fig.1. MRAC with vector controlled drive system for three-phase IM 

25 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, VOL.34, NO.2, 2011, ISSN 1221-454X 

 

 

5. SIMULATION RESULTS 

The MRAC of three-phase induction machine (IM) is 
shown in Fig. 1, in which Hm (s) is transfer function 
of the reference model and Hnm(s) is the transfer 
function of the unmodelled dynamics. The 
Matlab/Simulink implementation is depicted in Fig.2. 
The Matlab/Simulink-based compound law with both 
components gradient adjustment and variable 
structure adaptive control is presented in Fig.3.  

The mathematical model of a 7.5 [kW], 1480 [rpm] 
induction motor under a load torque of  2,38 [Nm] 
with a constant magnetizing current imR=isd=1.8 [A] 
is shown in the Figure 4. By using adaptive control 
(14), the angular velocity m  and the rotor field 
magnetizing angle (q) are delivered.  

 

Fig.3 The compound law with both components: 
gradient adjustment and variable structure 
adaptive control. 

The Forward Vector Transformation (FVT) block 
(Fig.4) transform the two phase (rotor field reference 

frame) components into three phase input currents 
(stator reference frame) by using Park and Clarke 
transformations. In order to perform these 
transformations, the instantaneous angle of the rotor 
field, q, is required. 

 

Fig.4 Matlab/Simulink implementation of the three-
phase IM in rotor field reference frame  

The simulation results of the adaptive electric drive 
system for a starting with no load, followed at t = 
0.5[s] of an applied load torque to three-phase 
induction motor shaft, are shown in Fig. 5 and Fig. 6. 

This control law (14) assures stability and regulating 
properties (confirming the robustness character of the 
law), and makes smooth transient response and zero 
racking errort

b
; the magnitude of oscillations is related 

y the g

Fig.2. Matlab/Simulink implementation of the MRAC with vector controlled drive system for three-phase IM 

 parameter from the adaptive control by 

gradient adjustment law. Thus, the asymptotic 
performances will be assured by gradient adjustment 
component.  
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6. CONCLUSIONS 
In order to evaluate the proposed MRAC three-phase 
IM, the simulation results based Matlab/Simulink 
software are provided. The model reference adaptive 
control, in direct form, unnormalized of three-phase 
induction machine has been presented.  A robust 
electric drive system is obtained, the actual speed 
being insensible to load variations (Fig.5). 

The adaptive control used in this paper exploit the 
full advantages of both components: the gradient 
adjustment law assures the asymptotic performances, 
and the variable structure control (based on 
adjustment that includes a sigmoid function) assures 
smooth response around the equilibrium point, 
robustness of the system, and a zero tracking error.  
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