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Abstract: Sometimes, in the case of highly nonlinear systems the traditional approaches 

of identification and control could be difficult to implement. In this case, a good 

alternative are the neural networks. In this paper a modular neural network for the 

identification of a pneumatic servo system is proposed. This approach is based on the 

partitioning of static characteristic of the pneumatic system. The neural modules are 

implemented with multilayer neural networks. 
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1. INTRODUCTION 

Considerable research has been conducted on the 

control of pneumatic systems (Bone and Ning 

2007); Chillari, 2001) due to their potential as a 

low-cost, clean, high speed, high flexibility, high 

power-to-weight ratio actuators (van Varseveld and 

Bone, 1997). However, nonlinearities such as those 

due to compressibility of air continue to limit their 

accuracy. Among the nonlinearities in a pneumatic 

system, friction (Ning and Bone, 2002) can have a 

significant effect on tracking performance, 

especially in applications that use rodless cylinders 

which have higher Coulomb friction than rodded 

cylinders. 

Compensation for nonlinearities in pneumatic 

systems (Richer and Hurmuzlu, 2000) has been a 

popular area of research in pneumatic system 

control. Most advanced nonlinear control strategies 

are based on a detailed mathematical model of the 

system. If a simplified mathematical model is used, 

then performance is sensitive to uncertainties and 

parameter variations. Although they show relatively 

good results, the requirement for model parameter 

identification has made these methods difficult to 

implement. This highlights the need for an adaptive 

controller that is not based on a mathematical 

model. 

In the last twenty years some researchers focused on 

the using of artificial neural networks (NN) for the 

identification and control of pneumatic systems 

(Abu-Mallouh, 2008; Choi, 1998; Gross and Rattan, 

1997; Kothapalli and Hassan, 2008; Ning and Bone, 

2005; Taghizadeh, 2010; Wang and Peng, 2003. 

However, the apply of modular neural networks to 

these systems wasn’t studied too much. So, this is 

the main focus of the paper. 

Basically, it is easier to develop local models 

(Jacobs et. all, 1991) or controllers (Narendra, 1997) 

because the dynamics are simpler locally than 

globally.  For instance, if the system behavior 

changes smoothly with the operating point, then, a 

linear model (or controller) will always be 

sufficiently accurate locally (Murray-Smith and 

Johansen 1997). 

The paper is structured as follows: Section 2 

proposes a modular NN to be used for nonlinear 

system identification. In section 3, a pneumatic 

servo-system is used as a case study. Section 4 

draws some conclusions. 
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2. THE IDENTIFICATION OF NONLINEAR 

DYNAMIC SYSTEMS USING MODULAR 

NEURAL STRUCTURES 

In this paper, starting from the approximation of a 

nonlinear system using multiple linear systems, a 

modular neural structure for the identification of 

nonlinear dynamic systems is proposed. This 

modular structure contains NN that will be further 

called local neural models (LNM). 

Without reducing the generality of the approach, we 

consider a nonlinear system with a single input and 

single output described by the following nonlinear 

discrete input-output equation: 

(1)  
m))-us(k2),...,-us(k

1),-us(k n),-ys(k2),...,-ys(k 1),-(ys(kfys(k) nel=  

where: 

ys(k) - is the system output at the discrete time 

moment k, 

ys(k − j) - is the jth system output at the discrete 

time moment (k − j)  where j = 1,n, 

us(k − j) - is the jth system input at the discrete time 

moment (k − j)  where j = 1,m, 
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N - is the data set  size used at identification. 

Observation 1. In many engineering applications 

the input and output signals are bounded. This will 

be one of the hypotheses of the scientific 

approaches in this paper. 

Consequently, ],[)( supinf uukus ∈ , where uinf and 

usup represent the lower limit and upper limit of the  

input us(k), respectively. 

Usually, the models of nonlinear dynamic systems 

are difficult to use. For example, they are difficult to 

derive or to synthesize a nonlinear control law. For 

poorly understood systems, the derivation of a 

model from the first principles of physics, 

chemistry, biology is even impossible. To overcome 

this difficulty, a modular neural structure that allows 

the decomposition of a complex problem in several 

less complex subproblems will be used. 

The modular structure for the nonlinear systems 

identification described by Eq. (1) is given in the 

following figure: 

 
Fig. 1 MNN for system identification 

where: 

 LNMi - local neural models used to approximate the 

nonlinear dynamic system in the neighborhood of 

steady points; 

Neural Switcher (NS) - enables a LNM that 

approximates best the nonlinear system output at a 

given time. 

In fig.2 and fig.3 the detailed schemes of the LNMi 

and of the NS are represented. 

 
Fig. 2  The detailed scheme of the LNMi                                                                      
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Fig. 3 The detailed scheme of the NS 

The significance of the variables from the figures 

above is: 

• yi(k) i=1,q – is the output of the LNMi ; 

• y(k) – is the output of the modular structure which 

approximates the nonlinear system output - 

ys(k) at a given time; 

• ys(k − j) - is the jth system output at the discrete 

time moment (k − j)  where j = 1,ni, 

• us(k − j) - is the jth system input at the discrete 

time moment (k − j)  where j = 1,mi, 

• and z
−1

 is the delay operator. 

In the popular approach gain scheduling control
25

, 

the nonlinear system is approximated by a certain 

number of linear systems. In this case the 

performances are guaranteed only for small 

variations in the neighborhood of the operating 

points. The approach of this paper is that the 

nonlinear system is approximated by q NN which are 

also nonlinear systems. The LNMi used requires a 

smaller number of parameters and their training is 

easier than the training of a single network that 

should approximate the nonlinear system described 

by eq. (1). 

The NS  from Fig.3 is a NN that should determine the 

static point where the system operates at a given time 

and decide which LNMi   provides the output  closest 

to the  nonlinear system output given by eq.(1). The 

NS must be trained so that its decision is dependent 

on the input and output data on a time range. In some 

applications the decision is based only on the input 

data or on the error data. This approach will not 

guarantee a good performance in dynamic regime. 

The LNM from fig.3 implements a nonlinear function 

described by the following nonlinear discrete 

equation: 

(2)  

))rm-us(k2),...,-us(k,

1),-us(k ),rn-ys(k2),...,-ys(k 1),-(ys(k
r
NNf(k)ry =  

where: 

• 
qr

r
NNf ,1=

- is the nonlinear function implemented 

by each LNMr;  

• yr(k) - is the NN output at the discrete time moment 

k, 

• ys(k − j) - is the jth system output at the discrete 

time moment (k − j)  where j = 1,nr, 

• us(k − j) - is the jth system input at the discrete 

time moment (k − j)  where j = 1,mr, 

• ],[)( supinf
rr

uukus ∈ ,   q1,  r =  is the system input at the 

discrete time moment k 

• rr usus supinf ,  represent the lower value and the upper 

value, respectively,  of the input interval  

associated to LNMi. 

• Nmnk ii ),1),(max( += , 

• 
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• N - represents the size of data set used at the 

nonlinear system identification. 

For a good approximation of the nonlinear system 

described by eq. (1) by the nonlinear functions (2) 

implemented by LNM, we need a data set to cover all 

operating areas of the system. 

An advantage of the system identification by LNMi 

is: the values of the parameters nr and mr depend on 

the operating point. The number of LNMi parameters 

is correlated with the system nonlinearity in the 

neighborhood of the operating point.  

Still, for a correct classification,  parameters nc and 

mc  from fig. 3, must verify the following relations 

)}max({ ,1 qrrc nn
=

= ; )}max({ ,1 qrrc mm
=

= . Otherwise, 

the classifier will give erroneous results, if there are 

LNM for which  nr > nc and/or  mr > mc. 

A useful nonparametric representation of a dynamic 

system is the static characteristic that provides a 

clearer understanding of the system. The points from 

the static characteristic are obtained when the input, 

the output and the system states remain the same. 
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3. STUDY CASE. THE IDENTIFICATION OF A 

PNEUMATIC SYSTEM USING MODULAR 

NEURAL NETWORKS. 

To check the ability of the modular neural structure 

in identification we have chosen a complex nonlinear 

system, a pneumatic system. The pneumatic system 

components are: 

 

Fig. 4. The general scheme of the pneumatic system 

- a double  piston effect(Festo); 

- a compressor (Festo Jun-Air type); 

- a proportional valve (Festo DAS-SDE-4-GD); 

- a linear position sensor (SLS 095); 

- an acquisition card (Advantech PCI 1711); 

- two elastic springs to simulate the load to be 

driven by the piston. 

The described pneumatic system   is a system with 

several types of nonlinearities introduced by the 

proportional valve and the pneumatic cylinder etc. 

On a closer look the dynamic system nonlinearities 

can be identified due to frictional forces from the 

system or static nonlinearities due to hysteresis 

phenomena, the saturation or delay times (for 

example around the 5V  voltage the valve does not 

respond). 

All these types of nonlinearities can be observed on 

the static characteristic of the pneumatic system 

represented in fig. 5. 

 

Fig. 5. The static characteristic of the pneumatic system 
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Since NN can approximate nonlinear functions it’s 

not necessary to partition the input interval in a large 

number of subintervals. 

The search algorithm of the subintervals which 

correspond to LNM must achieve a compromise 

between the nonlinearity degree of the static 

characteristic on a subinterval and the number of the 

neural modules used. 

A partition algorithm was used to determine the 

adequate number of neural modules to be used. This 

one involves minimizing a quadratic criterion. Also a 

threshold value which quantifies the nonlinearity 

degree of the static characteristic must be established.  

If this value is lower, then the intervals’ number is 

large, otherwise if the value is higher, then the 

intervals’ number is smaller. 

In our case three modules are used: one NN for the 

left part of the static characteristic, one NN for the 

middle part and one NN for the left part. The 

structure of each LNM is 5-7-1 neurons on the three 

layers with tansig-tansig-purelin activation functions. 

The training was conducted until a sum squared error 

of at least 0.01 was obtained. 

In the fig. 6 are depicted the data sets used at the 

training of the neural modules used at the 

identification of the pneumatic system. 

 

 

Fig. 6. The training data sets for the three neural modules 
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After the training stage a validation stage is 

necessary. This is made with other data sets then the 

ones used the LNMs training. The results are 

presented in the figure bellow. One can observe that 

each LNM output mange to follow the response of the 

pneumatic system. 

 

 

 

Fig. 7. The validation of each LNM 

 

In fig. 8 the response of the modular NN together 

with pneumatic system response are shown. Also the 

way how NS choose the module that best 

approximates the system output is shown in the 

figure below. 

One can observe that in some area (the zoomed area 

in the fig. 8) the NS output balances between two 

modules. However, the modular NN output does not 

suffer despite these oscillations because both 

modules approximate very well the pneumatic 

system in that area. 
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Fig. 8. The identification performances using modular NN 

 

4. CONCLUSIONS 

In this paper, a modular neural structure for nonlinear 

pneumatic servo system identification has been 

presented. The principles of modularity were used at 

system identification with multiple nonlinearities.  

Based on the obtained results this approach could be 

a good alternative to the classical methods of system 

identification. 

Future direction consists in implementing a controller 

based on modular neural networks for the pneumatic 

servo system.  
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