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Abstract: Camera calibration is a necessary step in 3D vision in order to extract metric 

information from 2D images. A camera is considered to be calibrated when the 

parameters of the camera are known (i.e. principal distance, lens distorsion, focal length 

etc.). In this paper we deal with a single camera calibration method and with the help of 

this method we try to find the intrinsic and extrinsic camera parameters. The method 

was implemented with succes in the programming and simulation environment Matlab. 

Keywords: camera calibration, 3D vision, calibration pattern, intrinsic parameters, 
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1. INTRODUCTION
1
 

Camera calibration is a necessary step in 3D vision in 

order to extract metric information from 2D images. 

A camera is considered to be calibrated when the 

parameters of the camera are known (i.e. principal 

distance, lens distorsion, focal length etc.). For this 

purpose, in the last twenty years, many calibration 

algorithms have been developed in the computer 

vision community. This algorithms are generally 

based on the perspective camera models. Among the 

most popular is Robert Tsai’s calibration algorithm 

(Horn, 2000), (Tsai, 1987). His algorithm is based on 

the pinhole model of perspective projection. The 

model proposed by Tsai assumes that some of the 

camera’s parameters are given by the are 

manufacturer, in order to reduce the initial guess of 

estimation. The algoritm requires n feature points (n 

> 8) per image and solves the calibration problem 

with a set of n linear equations based on the radial 

alignment constraint. A second order radial distorsion 

model is used while no decentering distorsion terms 
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are considered. This method can be used with either a 

single image or multiple images of a planar or 3D 

calibration grid. 

Another important and very popular calibration 

method has been developed by  Zhenyou Zhang 

(Zhang, 1998). His method requires a planar 

checkerboard grid to be placed in front of the camera 

at different orientations. The algorithm uses the 

extracted corner points of the checkerboard to 

calculate a projective transformation between the 

image points of the different images. The camera’s 

intrinsic and extrinsic parameters are recovered using 

a closed-form solution. The radial distorsion terms 

are recovered within a linear least-squares solution. 

The final step is the use of a non-linear minimization 

of the reprojection error that refines all the recovered 

parameters. Zhang’s method is similar to the one 

proposed by Triggs (Triggs, 1998). Zhang’s 

algorithm is the basis behind some popular open 

source implementations of camera calibration (i.e. 

Intel’s OpenCV and Matlab’s calibration toolkit). 

In this paper we present the implementation of a 

camera calibration method based on the calibration 

methods presented by Trucco (Trucco and Verri, 

1998). 
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2. CAMERA CALIBRATION 

The key idea behind calibration is to write the 

projection equations linking the known coordinates 

of a set of 3D points and their projections, and solve 

for the camera parameters. In order to get to know 

the coordinates of some 3D points, camera 

calibration methods rely on one or more images of a 

calibration pattern (a 3D object of known geometry, 

possibly located in a known position in space and 

generating image features which can be located 

accurately). In the aborded method we use the 

perspective camera model, also known as the pinhole 

camera model. 

The method presented here consists in two stages: 

• Estimation of the projection matrix by 

linking world and image coordinates; 

• Computation of the camera’s parameters 

as closed-form functions of the entries of the 

projection matrix. 

2.1.  Estimation of the projection matrix 

The relation between the 3D coordinates (Xi
w
, Yi

w
, 

Zi
w
) of a point in space and the 2D coordinates (x, y) 

of its projection on the image plane can be written by 

means of a 3x4 projection matrix, M, as follows: 
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The matrix M is a scaling factor and its entries can be 

determined through a homogenous linear system 

formed by writing (2) for at least 6 world image 

points. With the help of a calibration pattern like the 

one presented in fig.1, many more correspondences 

and equations can be obtained and M can be 

estimated through least squares techniques. 

The projection matrix M can be estimated by solving 

the following homogenous linear system: 

(3) ,0=Am  

where A is presented in (3) and m is: 

[ ]Tmmmmm 34331211 ,,...,,=  

The non-trivial solution of the homogenous equation 

0=Am is found by recovering the vector m from 

singular value decomposition (SVD) techniques of 

matrix A as the last column of V. In agreement with 

the above definition of M this means that the entries 

of M are obtained up to an unknown scale factor. 

2.2. Camera parameters from the projection matrix 

In practical solutions it is not always sufficient to 

have estimated the projection matrix M, the camera 

intrinsic ( yxyx ooff ,,, ) and extrinsic (R, T) 

parameters are also needed. We assume that the 

projection matrix has been estimated with the 

procedure from the previous section. The estimated 

projection matrix is denoted as M̂ : 

.ˆ
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First we rewrite the full expression for the entries of 

the projection matrix M: 

(4) ++++
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In this case we are trying to find the camera 

parameters yx ff , (where f  represents the focal 

length in horizontal pixels size units), yx oo , (where 

x
o and yo  are the image center coordinates), R (the 

rotation matrix) and the translation vector T 

( zyx TTT ,, beeing its elements). For this purpose we 

also need the following 3D vectors: 

[ ]Tmmmq 1312111
ˆ,ˆ,ˆ=  

[ ]Tmmmq 2322212
ˆ,ˆ,ˆ=  

[ ]Tmmmq 3332313
ˆ,ˆ,ˆ=  

[ ]Tmmmq 3424144
ˆ,ˆ,ˆ=  

Now, the estimated projection matrix M̂  can be 

written as MM =ˆ . Here  is 
33

qq
T

. 
3

q  is the 

last row of the R  matrix. The  next step is the 
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division of the M̂  matrix by . From the last row 

of (4) we have: 

34
m̂T

z
=  and  3,2,1,ˆ

33 == imr
ii

. 

with 1±= . By taking the dot product of 
3

q  with 

1
q  and 

2
q  it results that: 

 

31
qqo

T
x =  and  

32
qqo

T
y = . 

Then we can compute xf  and yf  as: 

2

11 x
T

x oqqf = and 
2

22 y
T

y oqqf = . 

Until now we have computed the intrinsic parameters 

of the camera. Now we can compute the extrinsic 

parameters: 

 ( ) ,3,2,1,/ˆˆ
131 == ifmmor xiixi  

 ( ) ,3,2,1,/ˆˆ
232 == ifmmor yiiyi  

 ( ) ,/ˆ
14 xzxx fmToT =  

 ( ) ./ˆ
24 yzyy fmToT =  

The estimated rotation matrix R̂  obtained by this 

procedure is not really orthogonal. Therefore we 

must compute the rotation matrix that is the closest to 

the estimated matrix R̂ . By using SVD we have: 

T
UDVR =ˆ and T

UVR = . 

Now we have all intrinsic and extrinsic parameters. 

The only thing that bothers us now is the sign of . 

It can be obtained very easily from 
34

m̂T
z
= . If the 

origin of the worl frame is in front of the camera then 

the sign of  is “+”, else the sign of  is “-”. 

3. EXPERIMENTAL EVALUATION 

For the experimental evaluation of the above method 

we have used a wireless CMOS camera. Because the 

images taken by the camera were very noisy, we 

needed a filter to remove that noise. The filter used 

for this purpose was a simple one, the median filter. 

The calibration object used for the process consists of 

two perpendicular planes, in our case we have used 

two sides of a box. On the two sides we added a 

calibration pattern consisting of square tiles. The 

sides of the tiles are 1 cm. Another important step in 

the calibration process is to chose a convenient world 

coordinate frame (see Fig.1). 

The first step of the calibration process is to set the 

3D matrix XYZ, that containts the 3D coordinates of 

the calibration points. We have chosen those points 

as follows: as we know the sides of the tiles are 1 cm, 

so the XYZ coordinates for a point near the origin of 

the world system are (-1, 0, 1). Then we need to set 

up the 2D matrix xy, matrix that contains the 2D 

coordinates of the calibration points. For this purpose 

we have developed an interactive program that 

colects the 2D coordinates of these points (see Fig.2).  

 

Fig.1. The calibration object and the chosen world 

coordinate frame. 

 

Fig.2. The calibration object and resulting calibration 

points. 

For an accurate calibration process we need between 

20 and 30 points. After this step is completed, the 

estimation of the projection matrix M can be done by 

applying  the method presented early in this work. 

To show that the calibration process was accurate we 

have considered some cubes with the sides equal to 

the sides of the tiles and we have put them over the 

calibration pattern. It can be easily observed the 

correction of the projection matrix estimation (see 

Fig.3). 
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Fig.3. The calibrated camera allows for 3D objects to 

be drawn in the scene. 

In the final step we have computed the estimates for 

the camera’s intrinsic and extrinsic parameters from 

the projection matrix. The resulting intrinsic 

parameters are: 

,5092.329;0655.321 pxfpxf yx ==  

.7667.164;8256.156 == yx oo  

And the camera’s extrinsic parameters obtained from 

the calibration process are: 

=

0078.07377.06750.0

0189.06751.07375.0

9998.00070.00192.0

R , 

=

9378.23

6508.0

2695.6

T . 

The entire calibration process has been implemented 

in the programming and simulation environment 

Matlab. 

4. CONCLUSIONS 

The method presented here is a simple calibration 

method that gets the job done. The precision of the 

calibration depends on how accurately the image and 

world reference points are located. The errors on the 

parameter estimates propagate to the result of the 

application. The calibration process ultimately 

depends on the accuracy requirements of the target 

application. For example, in industry accuracies of 

submillimeter are required. In other application are 

accepted even errors of centimeters. 
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