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Abstract: In this paper the optimal electrical drive development system is presented. It 

consists of both electrical drive types: DC and AC. In order to implement the optimal 

control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as 

load), three-phase induction machine, and dSpace 1104 controller have been used. The 

on-line solution of the matrix Riccati differential equation (MRDE) is computed by 

dSpace 1104 controller, based on the corresponding feedback signals, generating the 

optimal speed reference for the AC drive system. The optimal speed reference is tracked 

by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control 

(consisting of rotor field oriented control with PI controllers) and the optimal one have 

been implemented by designing an adequate ControlDesk interface. The three-phase 

induction machine (IM) is controlled at constant flux. Therefore, the linear dynamic 

mathematical model of the IM has been obtained. The optimal control law provides 

transient regimes with minimal energy consumption. The obtained solution by 

integration of the MRDE is orientated towards the numerical implementation-by using a 

zero order hold. The development system is very useful for researchers, doctoral 

students or experts training in electrical drive.  The experimental results are shown. 

Keywords: optimal control, matrix Riccati differential equation, electrical drive, 

induction motor. 

 

1. INTRODUCTION 

In many countries, the electrical motors are used in 

various places: industry and domestic applications. 

Taking into account that the energy efficiency is an 

European Union priority, the authors have been 

developed an experimental system for electrical drive 

optimization.  

The dedicated optimal control developed system 

includes both drive systems: AC and DC.   

A large proportion of electrical energy is consumed by 

induction motors. Therefore, the electrical energy 

reduction by just few percent has a major impact in 

total electrical energy consumption.  

The optimal control for three-phase IM drive system  

have attained researchers’ attention for many years 

(Veerachary, 2002 ; Tamimi, et al., 2006 ; Cheng, et 

al., 2007; Su, et al., 2004; Matinfar, et al., 2005; 

Deneika, 2006; Zhongke, 2004; Jianqiang, et al., 

2007). This paper focuses on the AC drive 

optimization.   

In order to improve the AC drive efficiency, in which 

dynamic regimes are often required, an optimal control 

law is computed by using linear quadratic criteria.  
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The objectives of the optimal control law are smooth 

response, no oscillations on the control interval, no 

overshoot, the fast compensation of the load torque, 

and of minimizing the AC drive input energy. 

2. PROBLEM FORMULATION 

2.1.  The model of the three-phase induction motor 

The decoupling of the stator current components, isd 

and isq, is performed in rotor field reference frame 

(Athans, et al., 1966; Leonhard, 1996). Maintaining 

the flux component of the stator current at the constant 

value, the mathematical model of the IM becomes 

linear and has the form (Gaiceanu, et al., 1999 ; 

Gaiceanu, 2004a ; Rosu, et al., 1998a): 
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in which isd is the flux component current; isq-the 

torque component current; imR   the rotor magnetizing 

current; ωm the instantaneous mechanical angular 

velocity of the rotor; me the electromagnetic torque of 

the induction motor; ml load torque; q the angular 

position of the rotor field; J the combined inertia of 

the motor and load; F the viscous friction coefficient; 

M the mutual inductance between the stator and the 

rotor d, q equivalent windings; τR the rotor time 

constant; σR the rotor leakage factor; p the number of 

pole pairs. Eq.1, in the state form, becomes 
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the control vector u(t)= [ ])(ti
sq

and the perturbation 

vector is w(t)= [ ])(tml . 

2.2. The performance functional quadratic criteria 

The performance functional quadratic criteria 

(Athans, et al., 1966)  is as follows: 
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in which the required final state is: 
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and the weighting matrices  

(6) S 0≥ , R>0, Q 0≥   

have in view the minimizing of the square error 

between the reached state and the desired state x1 in 

the fixed time t1, the control effort and the expended 

energy in the motor windings. Therefore, the optimal 

control problem is: with free-end point, fixed time 

and unconstrained. The restrictions of the magnitude 

for the control and state could be solved by the 

adequate choice of the weighting matrices. 

3. THE SOLUTION OF THE OPTIMAL 

CONTROL PROBLEM 

By using the variational method, the Hamiltonian of 

the optimal control problem is 
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 being the costate vector. 

Therefore, the following canonic system is obtained 
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The well known boundary conditions result from the 

initial state x(0)=x0 and from the transversality of the 

costate vector (Athans, et al., 1966 ; Rosu, et al., 

1998b): . 

(9)  [ ]111 )()( xxS −= ttλ  

The optimal control law u
*
(t)=i

*
sq(t) results from the 

integration of the canonic system (6).  

In order to avoid the classic recursive solution of the 

MRDE with the well known disadvantages and the 

positive eigenvalues of the system, the current time 't' 

goes to 't1-t', time remaining until the end of the 

optimal process, through the adequate conversion of 

the state coordinates  (Gaiceanu, 2004b). 

The optimal control law, at any moment ' t ', is, 

(Rosu, et al., 1998 a,b; Gaiceanu, 1999; Gaiceanu, 

2004 b): 
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in which P(t1 - t) is the solution of the MRDE and the 

matrices K1 and K2 are calculated via P(t1-t).  
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The optimal control law has three components 

(Fig.1): the state feedback, the forcing component to 

achieve the desired state x1 and the compensating 

feed forward of the perturbation w(t).  

Obviously, the analytical solution supposes the 

knowledge of the perturbation w(t)=ml(t), which 

could be available by using a load torque estimator, 

as in (Gaiceanu, 1996 ; Rosu, et al., 1998c) or a 

torque sensor.  

4. THE STRUCTURE OF THE DEVELOPMENT 

SYSTEM 

The optimal control for ac drives has been 

implemented by means of an experimental test bed 

(Fig.2). The structure of the development system 

involves the three-phase induction motor, an 

electrical brake, the ac-ac converter, the dSPACE 

board and the current/voltage box of the transducers 

(Figure 2). 
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Fig.1. The optimal control system. 
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Fig.2. The developed experimental test bed 

In order to implement the optimal control, the 

dSPACE board computes the real-time MRDE’s 

solution. The obtained optimal solution is based on 

the corresponding feedback signals (line currents, 

phase voltages, IM rotor position and load torque), 

and on the references (Figure 1). By using the 

mathematical model of the IM, the dSpace controller 

delivers the optimal speed profile reference signal for 

the Altivar 71 converter (Fig.5). The Altivar71 tracks 

the optimal speed reference through the implemented 

rotor field oriented control. The results of the 

developed AC drive system consist of energy 

reduction in all system. 

5. EXPERIMENTAL RESULTS 

Maintaining the flux component of the stator current at 

the constant value, 3,827[A], the optimal control law 

(8) and the mathematical model (1) have been 

numerically simulated and implemented for starting 

period of a 2.2 [kW], 1420 [rpm] 1LA7106-4AA10-

Siemens induction motor without and with load torque.  

The initial conditions of the optimal control problem 

are: to=0[s], (ni=0 [rpm], qi=0). The free final 

conditions are:  tf=0.65[s], (nf=1500 [rpm], qi=0). Both 

types of control, i.e. classical and optimal (Figs.3,4), 

have been implemented on DS1104 controller board.  

The electrical drive signals (Figs.3-4), i.e. the line 

currents (iA, iB, iC), the supplying voltages of the 

induction motor (uR, uS, uT), the load torque Mf, and 

the rotor postion, can be monitored in real time by 

means of the developed ControlDesk (Figs.3,4). The 

ControlDesk acts as an interface between the DS1104 

controller and PC. The functions of the ControlDesk 

interface are: monitoring, load torque magnitude 

control, the type of the real-time control choosing 

(classical or optimal); real-time energy analyses for 

both type of controls. The output active and reactive 

power of the system, the speed, the RMS values of the 

phase current and voltage, and the output frequency of 

the inverter are calculated on-line based on the 

acquisitioned feedback signals (Figs.3-4).  

The references of the desired final state (x1) are 

provided by DS1104 through a digital to analog (DAC) 

channel of the connector panel CP1104 by means of 

the ControlDesk. Comparison between the classical 

and optimal system speed references is shown in Fig.5. 

The similar test has been performed for a braking.  In 

Fig.7 the experimentation platform for the development 

of the optimal drives (dc and ac) is depicted. 

 

Fig.3. The classical control system results. 
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The analysis reveals the system efficiency 

improvement through an important decreasing of the 

windings dissipation power (Figs3,4) and input power 

(Fig.6) in optimal control case during drive starting. 

Therefore, the power balance provides an increasing of 

the system efficiency, thus improved thermal and 

capacity conditions are obtained. 

 

Fig.4. The optimal control system results 
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Fig.6. The AC drive input energy comparison [p.u.]: 

classical and optimal control system 

 

 

Fig.7. The experimentation platform for the 

development of the optimal drives. 

 

  

Fig.8. The experimentation platform for the 

development of the optimal drives. 

From the Fig.6 it could be noted that: 1) during the 

AC drive starting the input energy decreases in 

optimal control case; 2) during the steady state 

regime both energy consumptions are the same. 

6. CONCLUSIONS 

In this paper the optimal control experimental test bed 

has been shown.  

The dedicated optimal control developed system 

includes both drive systems: AC and DC.   

The developed optimal control test bed is orientated to 

research purposes.  

The real-time optimal control solution is delivered by 

the dSpace controller interconnected with the Altivar71 

converter. 

The classical control (consisting of rotor field 

oriented control with PI controllers) and the optimal 

one have been implemented by designing an 

adequate ControlDesk interface. 
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In order to implement the optimal control, the 

dSPACE board computes the real-time MRDE’s 

solution. 

The solution features of the optimal control problem 

are:  

•  The nonrecursive solution has been used to avoid 

the main disadvantages of the recursive solution 

(that is, the solution can be calculated at the current 

time, not backward in time; the load torque could 

have any shape: either linear or nonlinear, in 

admissible limits due to the fact that solution is 

computed at each sample time); 

• The optimal problem is unconstrained, the 

magnitude constraints for the control and state can 

be solved by adequate choice of the weighting 

matrices S, R and Q; 

• According to Bellman's theorem of optimality, the 

solution obtained for a starting is extended for a 

braking or a reversing process. 

The features of the optimal controller: 

• The optimal control law provides about 19 % 

reduction in electrical losses compared to a standard 

control design;  

• High dynamic performances, without overshoot and 

the fast compensation of the lo ad torque;  

• Smooth dynamic response;  

• Due to the negative real eigenvalues, the stable 

system is obtained; 

• For the drives with frequent reversing and high 

power the solution can be feasible. 

The reduction of the energy assures either an increasing 

of the operational period of the electrical drives 

components, or the induction motor overload 

permission. 
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