
THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, Vol.31, No.2, ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recommended for publication by Severin Bumbaru
31

MODELLING INTELIGENT SYSTEMS WITH LEVEL PETRI NETS

Corina BOCĂNEALĂ

Department of Mathematics-Informatics,
University "Dunărea de Jos", Galaţi

Domnească 111, 800008, Galaţi
Email: cbocaneala@ugal.ro

Abstract: Level Petri Nets are formalism for modeling hierarchical multi-agent system.
They are a Petri nets extension, allowing tokens to be nets themselves. This paper is
inspired by two classes of level Petri nets: object Petri nets and nested Petri nets. We
present some concepts from the artificial intelligence field and we use them to illustrate
the modeling power of Petri nets with multi levels.

Keywords: Petri nets with multi levels, object Petri nets, artificial intelligence, daemons

1. INTRODUCTION

Petri nets are a very useful tool for modeling
distributed and concurrent systems.

Many researchers extended this formalism using
notions from object oriented programming. R. Valk
(1998) introduced object Petri nets consisting in a
system net with net tokens (object nets). An object
marking of a place in the object system can be an
object net with its marking or a natural number
representing the number of black tokens. Object
markings are adequate only for reference semantics
(the case of Petri nets where the references to the
dynamic token nets reside in the place, not the token
nets themselves). To give the value semantics for the
object Petri nets formalism, the notion of process
markings for the object system was introduced. In
this case the tokens are viewed as the finite process
of the token net. Object systems can synchronize
with the system net ore with another object system.
The synchronization between object systems is not
restricted to the case where they occupy the same
place. The occurrence rule for object systems allows
the distributed parallel execution of an object net in
the presence of a strict fork-join structure (Farwer,
2001). Other properties of this class of nets are
presented in (Kökler, 2003; Köhler and Rölke, 2004;
Köhler and Rölke 2005).

Another model of nets within nets concept is
represented by nested Petri nets introduced by I. A.
Lomazova (Lomazova 1999; Lomazova 2000;
Lomazova 2001). In a nested Petri net tokens may be
nets themselves. An element net may have its own
structure and behavior; it can appear and disappear
during a system run. There is no limit concerning the
number of the element nets. Lomazova presents the
case of the two level Petri nets. The behavior of a
two - level Petri nets consists in four types of steps.
The transport step is a step in the system net that can
generate, move or remove elements, but it can not
change the inner state of the elements of the system
net. An element autonomous step changes the inner
state of some elements of the system net. The vertical
synchronization step means simultaneous firings of
two transitions: one from the system net and the other
from an element net involved in the firing in the
system net. Vertical synchronization step refers to
simultaneous firings of two transitions from two
element nets in the same place of the system net.
Three level Petri nets are presented in (Jucan and
Captarencu, 2002). We can generalize these steps to
k-level Petri nets.

The first section presents some concepts regarding
Petri nets with multi levels inspired by the
Lomazova’s nested Petri nets.

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, Vol.31, No.2, ISSN 1221-454X

32

In the second section we present some notions from
the artificial intelligence field. A daemon is a
procedure created for the purpose of handling
periodic service requests that a computer system
expects to receive. A program might include any
number of daemons. A daemon has three states:
asleep, awake and active.

The third part of this paper shows how we can use
level Petri nets for modeling intelligent systems.
Using level Petri nets processes can be manipulated
by others. Level Petri nets are used for modeling
issues by many researchers (Van Hee, et al,. 2006;
Captarencu and Jucan, 2003; Bashkin and Lomazova,
2003a; Bashkin and Lomazova, 2003b; Lomazova,
2002).

2. TWO LEVEL PETRI NETS: DEFINITIONS

In this section we give a general definition of two
level Petri Nets. These notions were presented by
I.A. Lomazova (1999, 2000, and 2001). We consider
that reader is familiar with the notions of Petri net
theory (Jucan and Ţiplea, 1998).

Let Var = {v1, …} a set of variable and Con = {c1,…}
a set of constants. We’ll interpret the elements of
Con as element nets with their markings. We
consider Atom = Var ∪ Con.

Definition 2.1. We define Expr(Atom) the expression
language with the operations “(,…,)n” and “+”. We
have:

- An atom∈Atom is an expression from
Expr(Atom) with dimensionality 1.

- If atom1, atom2, …, atomn∈ Atom, then the tuple
(atom1, atom2, …, atomn) is an expression in
Expr(Atom) with dimensionality n.

- IF e1, e2 ∈ Expr(Atom) are expression with the
same dimensionality n, then (e1 + e2) is an
expression in Expr(Atom) with the
dimensionality n.

Constants in the expression in Expr(Atom) will be
interpreted as ordinary Petri nets or as individual
token without inner structure (atomic tokens). Var(e)
means the set of variable occurring in
e ∈ Expr(Atom).

Anet is the set of net tokens and Aatom is the set of
atomic tokens.

We consider Labv = {l1, l2, …} and Labh = {λ1, λ2, …}
two disjoint set of labels. Labels from Labv are used
for vertical synchronization and labels form Labh are
used for horizontal synchronization.

We also define the adjacent labels l ∈ Labv and
! ∈Labh. l1, l2 ∈ Labv, l1 ! l2 implies

21
ll ! .

λ1, λ 2 ∈Labv, λ1 ≠ λ2 implies
21
!! " . ll def= ,

!! def= .

Definition 2.2. A two level Petri net is a tuple:

LPN =(Atom, Lab, (PN1, 1

0
m), …, (PNk, k

0
m), SN, Λ),

where:

- Atom = Var ∪ Con is a set of atoms;

- Lab = Labv ∪ Labh is the set of labels defined
above;

- (PN1, 1

0
m), …, (PN2, k

0
m), k ≥ 1 are a finite

number of ordinary Petri nets together with their
initial markings;

- SN = (N, L, U, W, M0) is a high level Petri Net,
called system net for LPN , where:

• N = (P, T, F) is a Petri net;

• L = Expr(Atom);

• U = (A, I), A = Anet∪ Aatom, I : Con → A
is an interpretation function which gives
the interpretation to constant names;

• W is a function which maps an arc (x, y)
to an expression W(x, y) with dimension
n, where n is the arity of the place
incident to arc (x, y);

For each transition its arc expressions
must satisfy the following restrictions:
there are not net constants (from Anet) in
input arc expressions; every variable
has at most one occurrence in each
input arc expression; for every two
expressions W(p1, t) and W(p2, t)
ascribed to two input arcs for the same
transition t, it is necessary that
Var(W(p1, t)) ∩ Var(W(p2, t)) = ∅.

If for an arc an expression is not present
we suppose it is 1 ∈ N.

• M0 is the initial marking of the net;

- Λ is a partial function of transition labeling.

Let us consider a transition t in SN. We denote by
•t = {p1, p2, …, pi} the set of its preelements and by
t• = {q1, q2, …, qj} the set of its post elements.

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, Vol.31, No.2, ISSN 1221-454X

33

A binding of t is a function b which ascribes to each
variable v occurring in some expression in W(t) a
value b(v) from A.

Definition 2.3. A transition t in SN is enabled in a
marking M w.r.t. a binding b if and only if

∀ p ∈ •t: W(p, t)(b) ⊆ M(p).

The enabled transition fires and results a new
marking M′. We write M !! "!

]b[t M′.

For all places p,

M′ (p) = (M(p) \ W(p, t)(b)) ∪ W(t, p)(b).

If a net token appears as a variable in an input arc
expression from W(t), we say that it is involved in
firing of t. It will be removed from input place, but it
may be put to output places of t.

Definition 2.4. There are four kinds of steps in a two
level Petri net LPN :

The transport step: Let t be an unlabeled transition
(Λ(t) is not defined) in SN. If t is enabled in a
marking M w.r.t a binding b and M !! "!

]b[t M′, then
this firing of t in the system net is called a transport
step in LPN and we write M[t[b]〉 M′ or just M[〉M′.

A transport step doesn’t change the inner markings of
net tokens, but it can remove or transfer some of net
tokens. New net can evolve as a result of a transport
step.

The element-autonomous step: Let M be a marking in
LPN , p∈P a place in SN and ! =(α1,α2,…,αn)∈ M(p)
a tuple of tokens in p. Let αi =(PN, m) be a net token
in this tuple with a transition t enabled in a marking
m. We consider that Λ(t) is not defined and
m !"!

t m′. Let M′ be the marking in LPN obtained
substituting a net token αi = (PN, m) with
i

!"= (PN, m′) in M. So M′ is the marking obtained
form m as a result of local firing of t in a net token αi,
while PN remains in the same place of SN.

This firing is called an element-autonomous step in
LPN . We write M !"!

t M′ or just M[〉M′.

The horizontal synchronization step: Let M be a
marking in LPN , p ∈ P a place in SN and
! = (α1, α2, …, αn) ∈ M(p) a tuple of tokens in p.
Let αi =(PN1, m1) and αj =(PN2, m2) be a two net
tokens in this tuple and t1 an enabled transition in
PN1, with Λ(t1) = λ, λ ∈ Labh such that
m1

1

t
m1 !"#" (using the rules for ordinary Petri nets),

t2 an enabled transition in PN2, with Λ(t2) = ! ,
! ∈ Labh such that m2

2

2 m
t !"#" (using the rules for

ordinary Petri nets). We consider M′ the marking in
LPN obtained substituting a net token αi =(PN1, m1)
with

i
!"= (PN1, 1

m!) in M and αj =(PN2, m2) in M
with j!" = (PN2, 2

m!). M′ is the marking obtained
from M by simultaneous firings of t1 in PN1 and t2 in
PN2 while both nets PN1 and PN2 remain on their
position in the same tuple in a place in SN.

This firing of t1 and t2 is called a horizontal
synchronization step in LPN . We write M[t1, t2〉M′ or
just M[〉M′.

The vertical synchronization step: Let M be a
marking in LPN and t a transition enabled in M w.r.t.
a binding b and M !! "!

]b[t M′, Λ(t) = l, l ∈ Labv.
Let α1, α2, …, αk ∈ Anet be the net tokens involved in
the firing of t, where α1 =(PN1, m1), α2 =(PN2, m2),
…, αk =(PNk, mk). We suppose that for each i= k,1
there is a transition ti∈ PNi, such that ti is enabled in
a marking mi, mi i

t
m

i !"#" (using the rules of ordinary

Petri nets) and Λ(ti)= l , l ∈ Labv. We consider
W′(t, p)(b) the multiset of token tuples, obtained from
W(t, p)(b) by replacing a net token αi = (PNi, mi) by
token

i
!" = (PNi, i

m!), for all i= k,1 .

Synchronous firing of a transition t in a System net
SN together with the transitions involved in this
firing results a marking

M′ = (M(p) \ W(p, t)(b) ∪ W′ (t, p)(b).

Such a synchronous firing of a transition t w.r.t. a
binding b in a system net and transitions t1, t2, …, tk
in involved net tokens α1, α2, …, αk is called a vertical
synchronization step.

We write M[t[b]; t1, …, tk〉M′ or just M[〉M′.

We say that a marking M′ is directly reachable from a
marking M and we write M[〉M′ if there is a step in
LPN leading from M to M′.

A run of a level Petri net LPN is a sequence of
markings M0[〉M1[〉… successively reachable from
the initial marking M0.

A marking M in LPN is called reachable if there
exists a run M0[〉M1[〉…[〉Mk with M = Mk.

If a level Petri net can generate its copy directly or as
a grandchild in a run process, then it is called
recursive level Petri net.

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, Vol.31, No.2, ISSN 1221-454X

34

Fig.1. A two level Petri net

In a three level Petri net (Jucan and Captarencu,
2002), tokens are two level Petri nets. The behavior
of a three level Petri net is more complex. The
transport step is similar to the one in the case of two-
level Petri nets. An element autonomous step consists
in two cases depending if the transition fires at level
two or at level three. The horizontal synchronization
considers the synchronization between elements on
level two or between elements on level three. We can
have a horizontal synchronization between all three
levels, between level one and level two or between
level two and level three.

For practical reasons it is useful to suppose that the
element nets in a k-level Petri net can have 1, 2, … or
k-1 levels. If a k-level Petri net is considering, the
four classes of steps are maintained, but generalized.
The transport step is the same like in the two or there
level net. The element autonomous step is divided in
two cases: the element net is an ordinary Petri net or
is a level Petri net. Horizontal synchronization is
divided in horizontal synchronization of some
elements (two ore more) in the system net or
horizontal synchronization of some elements in the
system net of an element net. Vertical
synchronization means synchronization between
transitions from two ore more adjacent levels. First
level of vertical synchronization is also important.

We can also generalize the coverability structures for
level Petri nets (Bocăneală, 2008). We construct the
coverability trees for the system net and for the

element net and we synchronize them using the
labels for vertical or horizontal synchronization. The
coverability tree for the system net of LPN is finite
and it can be effectively constructed.

The coverability tree helps us to solve some
decidability problems such as: the termination
problem, the transitions activity maintainability
problem, the maintainability problem.

3. DAEMONS

An expert system to act intelligent must validate and
manipulate knowledge, not only store it. A method is
a procedure that is executed whenever is needed. A
daemon represents a procedure which is activated
whenever the intelligent system satisfies some
conditions. A daemon always offers its services if the
system needs that. We can consider a daemon an
IF-THEN structure. The two notions of method and
daemon are not synonyms.

A daemon has three states: asleep, awake and active.
When it is asleep the daemon doesn’t pay attention to
the changes in his universe. If the daemon is awake it
traces the changes in his environment and decides if
it is necessary to offer its services. If the daemon is
active it resolves its job and after finishing it
becomes awake. Only another process can decide if
an awaken daemon must be asleep or if an asleep
daemon must be awake. Most demons will operate
without user actions.

An example of a demon may be found in personal
computer help systems when a program activated by
the state of the user applications, offers help, or an
idea. Another example is the alarm clock from the
mobile phone. Mail daemons will let us know that an
email has been unsuccessful and returned. Antivirus
programs are demons.

An AI program might include a number of demons.
One or more daemons might become active when
new information (knowledge) was acquired by the
program. If the new knowledge affects demon
knowledge, it would spring into action and create
new piece of knowledge based on its particular
inference rules. Each of these new pieces of
knowledge might activate additional demons that
would continue to filter through and refine the entire
AI knowledge base.

4. MODELLING INTELIGENT SYSTEMS WITH
LEVEL PETRI NETS

Daemons are one of the main notions of artificial
intelligence and software development. A daemon is

p

 l1

l2

1
l

 λ

PN1

2
l

 !

SN

PN2

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, Vol.31, No.2, ISSN 1221-454X

35

intelligent. It must complete some actions and must
interact with agents. We can say that a daemon:

- has initiative: its actions are determined by the
state of its universe, but it decides if, when and
where must intervene;

- interacts: it interacts with other daemons or with
others processes (e.g. the processes which
changes its state: awake or asleep);

- is reactive: if its universe attained a certain state
if can perceive this information and react on it.

We can model intelligent system with object Petri
nets. In this case daemons can be dynamically
created and destroyed as instances of a daemon
classes. A daemon class is a Petri net.

Level Petri nets can be used for modeling daemons
and their behavior. The universe can be modeled as
the system net. Elements in a level Petri net may
have their own structure and behavior may evolve or
disappear during the system run and their number is
unlimited.

It is obvious that we can have any number of levels
in the net witch models an intelligent system. A
daemon is a procedure witch calls other daemons.
Net daemons may have net tokens corresponding
with some procedures.

Level Petri nets are adequate for modeling daemons
features. Initiative is modeled by the element
autonomous step. An element autonomous step only
changes the inner state of the net daemon. Interaction
is modeled by horizontal synchronization. A daemon
must act in the same time with other ones or with
others procedures. The transitions in the daemon net
witch must fire at the same time with other from
other nets must be labeled for horizontal
synchronization. We can show that a daemon is
reactive using vertical synchronization. Its transitions
fire with others of his parent net and it must be
labeled for horizontal synchronization.

For modeling daemon learning this formalism must
be extended with operations that can change arc
inscriptions or even net structure. These operations
should maintain some properties such as decidability
results. This is a subject for further research.

5. CONCLUSIONS

Level Petri nets are a visual and convenient tool for
modeling distributed and intelligent systems. They
maintain some important properties of classical Petri
net model, but they give a dynamic representation of
the hierarchical and modular structure of a system.
There are many kind of synchronization between

elements of Petri nets with multi levels witch
increase their expressivity.

In this paper we discuss some concrete aspects of the
applicability of level Petri nets. Our intension was to
combine some AI concepts with the modeling power
of level Petri nets.

For the moment, there is no software tool who
implements these ideas. We intend to create a
program to take advantage of the expressivity of the
nets within nets concept.

REFERENCES

Bashkin, V. and I.A. Lomazova (2003a). Resource
Similarities in Petri Net Models of Distributed
Systems, Lecture Notes in Computer Science,
Vol. 2673, Springer-Verlag, pp. 35-48.

Bashkin, V. and I.A. Lomazova (2003b). Petri nets
and resource bisimulation, Fundamenta
Informaticae, Vol. 55, 2003, pp. 101-114.

Bocăneală, C. (2008). On Coverability Structures for
Nested Petri Nets, Proceeding of the Third
International Conference on Mathematical
Sciences – ICM2008, United Arab Emirates,
Volume 1, pp. 234-243.

Captarencu, O. and T. Jucan (2003).
Interorganizational Workflows – an approach
based on level Petri nets, Scientific Annals of the
“Alexandru Ioan Cuza” of Iaşi, Romania,
Computer Science Section, Tome XIII,
pp. 17-37.

Farwer, B. (2001), Comparing Concepts of Object
Petri Net Formalisms, Fundamenta
Informaticae, Vol. 47, pp.247-258.

Jucan, T. and O. Captarencu (2002). Three Level
Petri Nets, Scientific Annals of the “Alexandru
Ioan Cuza” of Iaşi, Romania, Computer Science
Section, Tome XII, pp. 29-52.

Jucan, T. and F. Ţiplea (1998). Reţele Petri – teorie
şi practică, Romanian Academy, Bucharest.

Köhler, M. (2003). Object Petri Nets: Definitions,
Properties and Related Models, Technical
Report FBI-HH-M-329/03, Universität
Hamburg, Fachbereich Informatik.

Köhler, M. and H. Rölke (2004). Properties of Object
Petri Nets, Lecture Notes in Computer Science,
Vol. 3099, Springer-Verlag, pp. 278-297.

Köhler, M. and H. Rölke (2005). Reference and
Value Semantics Are Equivalent for Ordinary
Object Petri Nets, Lecture Notes in Computer
Science, Vol. 3536, Springer-Verlag, pp. 309-
328.

Lomazova, I.A. and P. Schnoebelen (1999). Some
Decidability Results for Nested Petri Nets,
Lecture Notes in Computer Science, Vol. 1755,
Springer-Verlag, pp. 208-220.

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, Vol.31, No.2, ISSN 1221-454X

36

Lomazova, I.A. (2000). Nested Petri nets – a
formalism for Specification and Verification of
Multi-Agent Distributed Systems, Fundamenta
Informaticae, Vol. 43, pp.195-214.

Lomazova, I.A. (2001). Nested Petri nets: Multi-level
and Recursive Systems, Fundamenta
Informaticae, Vol. 47, pp. 283-293.

Lomazova, I.A. (2002). Modeling Dynamic Objects
in distributes Systems with Nested Petri Nets,
Fundamenta Informaticae, Vol. 51, pp. 121-133.

Valk, R (1998). Petri nets as Token Objects: An
Introduction to Elementary Object Nets, Lecture
Notes in Computer Science, Vol. 1420, Springer-
Verlag, pp1-25.

Van Hee, K., I.A. Lomazova, O. Oanea, A.
Serebrenik, N. Sidorova and M. Voorhoeve
(2006). Nested Nets for Adaptive Systems,
Lecture Notes in Computer Science, Vol. 4024,
Springer-Verlag, pp. 241-260.

http://whatis.techtarget.com/definition/0,,sid9_gci211
932,00.html.

