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1. INTRODUCTION 
 
As the volume of information available on the 
Internet and corporate intranets continues to 
increase, there is a growing need for tools helping 
people better find, filter, and manage these 
resources. Text categorization, the assignment of 
free text documents to one or more predefined 
categories based on their content, is an important 
component in many information management tasks; 
real-time sorting of email or files into folder 
hierarchies, topic identification to support topic 
specific processing operations, structured search 
and/or browsing, or finding documents that match 
long-term standing interests or more dynamic task 
based interests (Aas and Eikvil, 1999).  

Organizing human knowledge into related areas is 
nearly as old as human knowledge itself, as is 
evident in writings from many ancient civilizations. 
In modern times, the task of organizing knowledge 
into systematic structures is studied by ontologists 
and library scientists, resulting in such well-known 
structures as the Dewey decimal system, the AMS 
Mathematics Subject Classification, and the U.S. 
Patent Office subject classification. 

Subject-based organization routinely permeates our 
personal lives as we organize books, CDs, videos, 
and email (Chakrabarti, 2003). 

In many contexts trained professionals are 
employed to categorize new items. This process is 
very time-consuming and costly, thus limiting its 
applicability. Consequently there is an increasing 
interest in developing technologies for automatic 
text categorization.  

A number of statistical classification and machine 
learning techniques has been applied to text 
categorization, including regression models, nearest 
neighbor classifiers, decision trees, Bayesian 
classifiers, Support Vector Machines, rule learning 
algorithms, relevance feedback, voted 
classification, and neural networks (Aas and Eikvil, 
1999).  

Some researchers make a distinction between text 
classification and text categorization. ‘Text 
categorization’ is sometimes taken to mean sorting 
documents by content, while ‘text classification’ is 
used as a broader term to include any kind of 
assignment of documents to classes, not necessarily 
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based on content, e.g., sorting by author, by 
publisher, or by language (English, French, 
German, etc.). However, these terms will be used 
interchangeably in the present context, as will the 
terms ‘class’ and ‘category’, with the assumption 
that the meaning is about the assignment of labels 
or index terms to documents based on their content. 

The term ‘classifier’ will be used rather loosely to 
denote any process (human or mechanical, or a 
mixture of the two) which sorts documents with 
respect to categories or subject matter labels, or 
assigns one or more index terms or keywords to 
them (Jackson and Moulinier, 2002). 

 

2. PROBLEM FORMULATION 

Document classification may be seen (Sebastiani, 
2002) as the task of determining an assignment of a 
value from to each entry of the decision 

matrix: where g is a set of 

predefine categories, and is a set 
of documents to be classified. 
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Fig. 2. Decision Matrix: 
 
A value of 1 for is interpreted as a decision to 

file  under  and a value of 0 is interpreted as 

a decision not to file  under . 

jia ,
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For understanding this task some observations can 
be made: 
• the categories are just symbolic labels. No 

additional knowledge of their “meaning” is 
available to help in the process of building the 
classifier in particular, this means that the 
“text” constituting the label (e.g. Sports in a 
news classification task) cannot be used; 

• the attribution of documents to categories 
should, in general, be attributed on the basis of 
the content of the documents, and not on the 
basis of metadata (e.g. publication date, 
document type, etc.) that may be available 
from an external source. This means that the 

notion of relevance of a document to a 
category is inherently subjective. 

 
Different constraints may be enforced on the 
classification task, depending on the application: 
1. }|1|1|1{ K≥≤ elements of C must be 

assigned to each element of  D. When exactly 
one category is assigned to each document, this 
is often referred to as the non-overlapping 
categories case. 

2. each element of C must be assigned to 
}|1|1|1{ K≥≤ elements of  D. 

 
A number of distinguishable activities fall under the 
general heading of classification, but here is a list 
of the main types, with sample applications 
attached for illustrative purposes. The aim here is 
not to say how such problems should be solved, but 
to identify the main issues. 

– Routing. An online information provider sends 
one or more articles from an incoming news feed to 
a subscriber. This is typically done by having the 
user write a standing query that is stored run against 
the feed at regular intervals, e.g., once a day. This 
can be viewed as a categorization task, to the extent 
that documents are being classified into those 
relevant to the query and those which are not 
relevant. But a more interesting router would be 
one that split a news feed into multiple topics for 
further dissemination. 

– Indexing. A digital library associates one or more 
index terms from a controlled vocabulary with each 
electronic document in its collection. Wholly 
manual methods of classification are too onerous 
for most online collections, and information 
providers are faced with a large number of difficult 
decisions to make regarding how to deploy 
technology to help. Even if an extant library 
classification scheme is adopted, such as MARC4 
or the Library of Congress Online Catalog, there 
remains the issue of how to provide human 
classifiers with automatic assistance. 

– Sorting. A knowledge management system 
clusters an undifferentiated collection of memos or 
email messages into a set of mutually exclusive 
categories. 

Since these materials are not going to be indexed or 
published, a certain level of error can be tolerated. 
It is obvious that some of these documents will be 
easier to cluster than others. For example, some 
may be extremely short, yielding few clues to their 
content; some may be on one topic, while others 
cover multiple topics. In any event, there will be 
outliers, which will need to be dealt with by manual 
cleanup, if a high degree of classification accuracy 
is really necessary. 
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– Supplementation. A scientific publisher 
associates incoming journal articles with one or 
more sections of a digest publication where new 
results should be cited. Even if authors have been 
asked to supply keywords, matching those 
keywords to the digest classification may be 
nontrivial. However, there may be many clues to 
where an article goes, over and above the actual 
scientific content of the paper. For example, the 
authors may each have previously published work 
that has already been classified. Also, their paper 
may cite works that have already been classified. 
Leveraging this metadata will be the key to any 
degree of automation applied to this process. 

– Annotation. A legal publisher identifies the points 
of law in a new court opinion, writes a summary for 
each point, and classifies the summaries according 
to a preexisting scheme. Given the volume of case 
law, these tasks are most likely performed by teams 
of people. The written summaries will not be very 
long, and so any automatic means of classification 
will not have much text to work with. However, 
each summary comes from a larger text, which may 
yield clues as to how the summaries should be 
classified. It is possible that simply having program 
route new summaries to the right classification 
expert would improve the workflow (Jackson and 
Moulinier, 2002). 

2.1. Evaluating Text Classifiers 

There are several criteria (Chakrabarti, 2003) to 
evaluate classification systems: 

- Accuracy, the ability to predict the correct class 
labels most of the time. This is based on comparing 
the classifier-assigned labels with human-assigned 
labels. 

- Speed and scalability for training and 
applying/testing in batch mode. 

- Simplicity, speed, and scalability for document 
insertion, deletion, and modification, as well as 
moving large sets of documents from one class to 
another. 

- Ease of diagnosis, interpretation of results, and 
adding human judgment and feedback to improve 
the classifier. 

 

3. ALGORITHMS USED FOR TEXT 
CATEGORIZATION 

3.1. Handcrafted rule based methods 

In the '80s (Sebastiani, 2002) the most popular 
approach (at least in operational settings) for the 
creation of automatic document classifiers 

consisted in manually building, by means of 
knowledge engineering techniques, an expert 
system capable of taking text classification 
decisions. Such an expert system would typically 
consist of a set of manually defined logical rules, 
one per category, of type  

if <DNF formula> then <category> 

A DNF (disjunctive normal form) formula is a 
disjunction of conjunctive clauses; the document is 
classified under <category> if it satisfies the 
formula, if it satisfies at least one of the clauses. 
The most famous example of this approach is the 
Construe system built by Carnegie Group for the 
Reuters news agency. A sample rule of the type 
used in Construe is illustrated in figure 1. 

 

Figure 1. Rule-based classifier for the Wheat 
category; keywords are indicated in italic, 
categories are indicated in caps. 

However, it can readily be appreciated that the 
handcrafting of such rule sets is a non-trivial 
undertaking for any significant number of 
categories. The Construe project ran for about 2 
years, with 2.5 person-years going into rule 
development for the 674 categories. The total effort 
on the project prior to delivery to Reuters was about 
6.5 person-years (Jackson and Moulinier, 2002). 

The drawback of this approach is the knowledge 
acquisition bottleneck well-known from the expert 
systems literature. That is, the rules must be 
manually defined by a knowledge engineer with the 
aid of a domain expert (in this case, an expert in the 
membership of documents in the chosen set of 
categories): if the set of categories is updated, then 
these two professionals must intervene again, and if 
the classifier is ported to a completely different 
domain (set of categories) a different domain expert 
needs to intervene and the work has to be repeated 
from scratch (Sebastiani, 2002). 

3.2. Linear classifiers 

Classifiers are modeled as separators in a metric 
space. It assumes that documents can be sorted into 
two mutually exclusive classes, so that a document 
either belongs to a category, or it does not. The 
classifier corresponds to a hyper plane (or a line) 
separating the positive examples from the negative 
examples. If the document falls on one side of the 
line, it is deemed to belong to the category; if it 
falls on the other side of the line, it does not. 
Classification error occurs when a document ends 
up on the wrong side of the line. 
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Linear separation in the document space 

A linear separator can be represented by a vector of 
weights in the same feature space as the documents. 
The weights in the vector are learned using training 
data. The general idea is to move the vector of 
weights towards the positive examples, and away 
from the negative examples. 

The documents are represented as feature vectors. 
Features are typically words from the collection of 
documents. Some methods have used phrasal 
structures, or sequence of words as features, 
although this is less common. The components of a 
document vector can be 0 or 1, to indicate presence 
or absence, or they can be a numeric value 
reflecting both the frequency of the feature in the 
document and its frequency in the collection. The 
familiar tf-idf weight is often used. 

When a new document is classified, we look to see 
how close this document is to the weight vector. If 
the document is ‘close enough’, it is classified to 
the category. The score of this new document is 
evaluated by computing the dot product between 
the vector of weights and the document. 

Formally, if a document, D, is represented as the 

document vector ),...,,( 21 ndddd =
r

 and the 

vector of weights ),...,,( 21 nwwwC =
r

 represents 
the classifier for class C, then the score of 
document D for class C is computed by: 

∑
=
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The computed score is a numeric value, rather than 
being a binary ‘yes/no’ indicator of membership. 
The most commonly used method to decide 
whether document D belongs to class C given that 
score is to set a threshold θ , Then if 

θ≥)(DfC , 

we decide that the document is ‘close enough’ and 
assign it to the class (Jackson and Moulinier, 2002). 

Rocchio's algorithm 

Rocchio is the classic method for document routing 
or filtering in information retrieval. In this method, 
a prototype vector is built for each class , and a 
document vector D is classified by calculating the 
distance between D and each of the prototype 
vectors. 

jc

The distance can be computed by for instance the 
dot product or by using the Jaccard similarity 
measure.  

The prototype vector for class is computed as 
the average vector over all training document 
vectors that belong to class . This means that 
learning is very fast for this method (Aas and 
Eikvil, 1999). 

jc

jc

The algorithm consists of applying the formula 
shown below to the current weight vector, W, to 
produces a new weight vector, W. Typically, the 
first weight vector will have all zero components, 
unless there is prior knowledge of the class, e.g., in 
terms of keywords that have already been assigned. 

The jth component of the new weight vector, , 

is:     
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where n is the number of training examples, C is 
the set of positive examples (all training documents 
assigned to the class) and nC is the number of 
examples in C. dj is the weight of the jth feature in 
document D. α, β and γ control the relative impact 
of the original weight vector, the positive examples, 
and the negative examples respectively. 

Rocchio’s algorithm is often used as a baseline in 
categorization experiments. One of its drawbacks is 
that it is not robust when the number of negative 
instances grows large. 

3.3. On-line learning algorithms 

On-line learning algorithms, encounter examples 
singly and adapt weights incrementally, computing 
small changes every time a labeled document is 
presented. In general terms, on-line algorithms run 
through the training examples one at a time, 
updating a weight vector at each step. The weight 
vector after processing the ith example is denoted 
by ),...,,( ,2,1, niiii wwww =
r

. At each step, the new 

vector, 1+iwr , is computed from the old weight 

vector, iwr using training example with label yixr i. 
For all methods, the updating rule aims at 
promoting good features and demoting bad ones. 

Once the linear classifier has been trained, we can 
classify new documents using , the final 
weight vector. Alternatively, if we keep all weight 
vectors, we can use the average of these weight 
vectors, which was reported to be a better choice: 

1+nwr
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When we want to train classifiers on-line, we need 
to choose how and when weights are updated. 

Widrow-Hoff algorithm 

The Widrow-Hoff algorithm, also called Least 
Mean Squared, updates weights by making a small 
move in the direction of the gradient of the square 
loss, 2)( iii yxw −⋅

rr
. It typically starts with all 

weights initialized to 0, although other settings are 

possible. It then uses the following updating rule: 

jiiiijiji xyxwww ,,,1 )(2 −⋅−=+
rrη  

This rule is obtained by taking the derivative of the 
loss function introduced above, η  is the learning 
rate, which controls how quickly the weight vector 
is allowed to change, and how much effect each 
training example has on the weight vector. 

The weight-updating rule is applied to all features, 
and to every example, whether the example is 
misclassified by the current linear classifier or not. 

On-line learning of linear classifiers produces 
adaptive classifiers, classifiers that can learn on the 
fly. These classifiers are very simple, but effective 
and easy to train. Update rules are also simple and 
efficient, although a complex document 
representation may use a lot of space (Jackson and 
Moulinier, 2002). 

3.4. Decision tree classifiers 

A decision tree text classifier  is a tree in which 
internal nodes are labeled by terms, branches 
departing from them are labeled by tests on the 
weight that the term has in the test document, and 
leafs are labeled by categories. Such a classifier 
categorizes a test document by recursively 
testing for the weights that the terms labeling the 
internal nodes have in vector , until a leaf node 
is reached; the label of this node is then assigned to 

jd

jd
r

jd . Most such classifiers use binary document 
representations, and thus consist of binary trees. An 
example decision tree is illustrated in Figure 2. 

A possible method for learning a decision tree for 
category  consists in a “divide and conquer” 
strategy of: 

ic

- checking whether all the training examples have 
the same label (either  or ic ic );  

- if not, selecting a term , partitioning Tr into 
classes of documents that have the same value for 

, and placing each such class in a separate 
subtree. The process is recursively repeated on the 
subtrees until each leaf of the tree so generated 
contains training examples assigned to the same 
category , which is then chosen as the label for 

the leaf. The key step is the choice of the term  
on which to operate the partition, a choice which is 
generally made according to an information gain or 
entropy criterion. However, such a fully grown tree 
may be prone to overfitting, as some branches may 
be too specific to the training data. 

kt

kt

ic

kt

 

Figure 2. A decision tree. (edges are labeled by 
terms and leaves are labeled by categories; 
underlining denotes negation) 

Most decision tree learning methods thus include a 
method for growing the tree and one for pruning it, 
for removing the overly specific branches. 
Variations on this basic schema for DT learning 
abound. 

3.5. Decision rule classifiers 

A classifier for category  built by an inductive 
rule learning method consists of a disjunctive 
normal form rule, a conditional rule with a premise 
in disjunctive normal form. The literals in the 
premise denote the presence or absence of the 
keyword in the test document , while the clause 

head denotes the decision to classify  under . 
Decision rules are similar to decision trees in that 
they can encode any Boolean function. However, 
an advantage of decision rule learners is that they 
tend to generate more compact classifiers than 
decision tree learners. 

ic

jd

jd ic
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Rule learning methods usually attempt to select 
from all the possible covering rules (rules that 
correctly classify all the training examples) the 
“best” one according to some minimality criterion. 
While decision trees are typically built by a top-
down, “divide-and-conquer” strategy, decision 
rules are often built in a bottom-up fashion. 
Initially, every training example  is viewed as a 

clause 
jd

in γηηη →,...,, 21  where nηηη ,...,, 21  are 

the terms contained in and jd iγ  equals  or ic ic  

according to whether  is a positive or negative 

example of . The learner applies then a process 
of generalization in which the rule is simplified 
through a series of modifications (removing 
premises from clauses, or merging clauses) that 
maximize its compactness while at the same time 
not affecting the “covering” property of the 
classifier. At the end of this process, a “pruning” 
phase similar in spirit to that employed in decision 
trees is applied, where the ability to correctly 
classify all the training examples is traded for more 
generality (Sebastiani, 2002). 

jd

ic

3.6. Naïve Bayes classifier 

The naive Bayes classifier is constructed by using 
the training data to estimate the probability of each 
class given the document feature values of a new 
instance. We use Bayes theorem to estimate the 
probabilities:  

)(
)|()(

)|(
dP

cdPcP
dcP jj

j =  

The denominator in the above equation does not 
differ between categories and can be left out. 
Moreover, the naive part of such a model is the 
assumption of word independence, we assume that 
the features are conditionally independent, given 
the class variable.  

This simplifies the computations yielding  

∏
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=
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i
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An estimate  for  can be calculated 
from the fraction of training documents that is 
assigned to class :  
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Moreover, an estimate  for  
is given by:  
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where  is the number of times word i occurred 

within documents from class in the training set.  
ijN

jc

Despite the fact that the assumption of conditional 
independence is generally not true for word 
appearance in documents, the Naive Bayes 
classifier is surprisingly effective (Aas and Eikvil, 
1999).  

3.7. k Nearest Neighbors (kNN) 

k-NN is a memory based classifier that learns by 
simply storing all the training instances. During 
prediction, k-NN first measures the distances 
between a new point x and all the training 
instances, returning the set N(x,D, k) of the k points 
that are closest to x. For example, if training 
instances are represented by real-valued vectors x, 
we could use Euclidean distance to measure the 
distance between x and all other points in the 
training data, i.e. 2|||| ixx −  i = 1, . . . , n. After 
calculating the distances, the algorithm predicts a 
class label for x by a simple majority voting rule 
using the labels in the elements of N (x, D, k), 
breaking ties arbitrarily. In spite of its apparent 
simplicity, k-NN is known to perform well in many 
domains. In the case of text, majority voting can be 
replaced by a smoother metric where, for each class 
c, a scoring function  

∑
∈′

′=
),,(

),cos()|(
kDxNx C

xxxcs  

is computed through vector-space similarities 
between the new documents and the subset of the k 
neighbors that belong to class c, where  

is the subset of  
containing only points of class c. Despite the 
simplicity of the method, the performance of k-NN 
in text categorization is quite often satisfactory in 
practice (Pierre, Paolo and Padhraic, 2003). 

),,( kDxNC ),,( kDxN

3.8. Support Vector Machines (SVM) classifiers 

Support Vector Machines is a relatively new 
learning approach introduced by Vapnik in 1995 for 
solving two-class pattern recognition problems. It is 
based on the Structural Risk Minimization principle 
for which error-bound analysis has been 
theoretically motivated. The method is defined over 
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a vector space where the problem is to find a 
decision surface that “best” separates the data 
points in two classes. In order to define the “best” 
separation, we need to introduce the “margin” 
between two classes. Figures 3 and 4 illustrate the 
idea. For simplicity, we only show a case in a two-
dimensional space with linearly separable data 
points, but the idea can be generalized to a high 
dimensional space and to data points that are not 
linearly separable. A decision surface in a linearly 
separable space is a hyperplane. 

 

Figure 3. A decision line (solid) with a smaller 
margin which is the distance between the two 
parallel dashed lines. 

 

 

Figure 4. The decision line with the maximal 
margin. The data points on the dashed lines are the 
Support Vectors. 

The solid lines in figures 3 and 4 show two possible 
decision surfaces, each of which correctly separates 
the two groups of data. The dashed lines parallel to 
the solid ones show how much one can move the 
decision surface without causing misclassification 
of the data. The distance between each set of those 
parallel lines is referred to as “the margin”. The 
SVM problem is to find the decision surface that 
maximizes the margin between the data points in a 
training set. 

More precisely, the decision surface by SVM for 
linearly separable space is a hyperplane which can 
be written as 

0=−⋅ bxw rr
 

xr  is an arbitrary data point (to be classified), and 
the vector  and the constant b are learned from a 
training set of linearly separable data. Letting 

denote the training set, and 

 be the classification for (+1for being 

a positive example and -1 for being a negative 
example of the given class), the SVM problem is to 
find 

wr

)},{( ii xyD r
=

}1{±∈iy xr

wr and b that satisfies the following constraints 

1for  ,1 +=+≥−⋅ iybxw rr
 

1for  ,1 −=−≤−⋅ iybxw rr
 

and that the vector 2-norm of  is minimized. wr

The SVM problem can be solved using quadratic 
programming techniques. The algorithms for 
solving linearly separable cases can be extended for 
solving linearly non-separable cases by either 
introducing soft margin hyperplanes, or by mapping 
the original data vectors to a higher dimensional 
space where the new features contains interaction 
terms of the original features, and the data points in 
the new space become linearly separable. 

An interesting property of SVM is that the decision 
surface is determined only by the data points which 
have exactly the distance  from the 
decision plane. Those points are called the support 
vectors, which are the only effective elements in the 
training set; if all other points were removed, the 
algorithm will learn the same decision function. 

||||/1 wr

This property makes SVM theoretically unique and 
different from many other methods (Yang and Liu, 
1999). 

3.9. Feature Selection 

Even methods like SVMs that are especially well 
suited for dealing with high dimensional data (such 
as vectorial representations of text) can suffer if 
many terms are irrelevant for class discrimination. 
Feature selection is a dimensionality reduction 
technique that attempts to limit overfitting by 
identifying irrelevant components of data points 
and has been extensively studied in pattern 
recognition and in machine learning. 

Methods essentially fall into one of two categories: 
filters and wrappers. Filters attempt to determine 
which features are relevant before learning actually 
takes place. Wrapper methods, on the other hand, 
are based on estimates of the generalization error 
computed by running a specific learning algorithm 
and searching for relevant features by minimizing 
the estimated error. Although wrapper methods are 
in principle more powerful, in practice their usage 
is often hindered by the computational cost. 
Moreover, they can overfit the data if used in 
conjunction with classifiers having high capacity 
(Pierre, Paolo and Padhraic, 2003). 
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4. MEASURES OF PERFORMANCE 

The performance of a hypothesis function h(·) with 
respect to the true classification function f (·) can be 
measured by comparing h(·) and f (·) on a set of 
documents Dt whose class is known (test set). In the 
case of two categories, the hypothesis can be 
completely characterized by the confusion matrix 
(figure 5): 

 

Figure 5. Confusion matrix for two case scenarios. 

where TP, TN, FP, and FN mean true positives, true 
negatives, false positives, and false negatives, 
respectively. In the case of balanced domains (i.e. 
where the unconditional probabilities of the classes 
are roughly the same) accuracy A is often used to 
characterize performance. Accuracy is defined as 

|| tD
TPTNA +

=  

Classification error is simply E = 1−A. If the 
domain is unbalanced, measures such as precision 
and recall are more appropriate. Assuming (without 
losing generality) that the number of positive 
documents is much smaller than the number of 
negative ones, precision is defined as 

FPTP
TP
+

=π and recall is defined as 

FNTP
TP
+

=ρ . 

A complementary measure that is sometimes used 

is specificity 
FNTN

TN
+

=σ .  

In the case of multiple categories we may define 
precision and recall separately for each category c, 
treating the remaining classes as a single negative 
class. Interestingly, this approach also makes sense 
in domains 

where the same document may belong to more than 
one category. In the case of multiple categories, a 
single estimate for precision and a single estimate 
for recall can be obtained by averaging results over 
classes. Averages, however, can be obtained in two 
ways. When microaveraging, correct classifications 
are first summed individually: 

c
K

c c

K

c c

FPTP

TP

+
=

∑
∑
=

=

1

1µπ ,
c

K

c c

K

c cc

FNTP

FPTP

+

+
=

∑
∑

=

=

1

1µρ  

When macroaveraging, precision and recall are 
averaged over categories: 

           ∑
=

=
K

c
c

M

K 1

1 ππ ,   ∑
=

=
K

c
c

M

K 1

1 ρρ  

Compared to microaverages, macroaverages tend to 
assign a higher weight to classes having a smaller 
number of documents. 

 

5. CONCLUSIONS 
 
This paper has presented an overview of basic 
formulations and approaches to classification. It 
presented the algorithms that can be used in text 
classification: handcrafted rules, decision trees, 
decision rules, on-line learning, linear classifier, 
Rocchio algorithm, k Nearest Neighbor (kNN), 
Support Vector Machines (SVM). 
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