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Abstract: The proposed method aims to provide a new tool for texture recognition. For 
this purpose, a set of texture samples are decomposed by using the FastICA algorithm and 
characterized by a negentropy based signature. In order to do recognition, the texture 
signatures are compared by means of Minkowski distance. The recognition rates, 
computed for a set of 320 texture samples, show a medium recognition accuracy and the 
method may be further improved.  
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1. INTRODUCTION 
 

The natural textures, even the most regular ones, are  
random processes. Among the factors that determine 
their randomness, it worth to mention: texture’s 
constituents, their position and orientation, color etc.  
 
The natural textures have different statistical 
characteristics, which appear also in the independent 
components extracted from them. Consequently, the  
analysis of these components may provide some 
discriminatory features for texture recognition and 
classification. This property suggested us to use the 
Independent Component Analysis (ICA) for 
developing a new method for texture recognition  
(Coltuc et al., 2006).  
 
ICA is a statistical tool, able to reveal sets of almost 
independent components that are hidden in the 

random signals. In the beginning, this technique was 
developed for source separation applications. A 
classical example is the “cocktail-party problem”, 
where several simultaneous speakers, recorded by 
microphones held in different locations, are separated 
(Hyvärinen et al., 2001). Later, ICA has been  
successfully used also for problems like: human faces 
recognition (Draper et al., 2003), financial time 
series analysis (Kiviluoto and Oja,1998), separation 
of interfering signals in mobile telecommunications 
(Ristaniemi and Joutsensalo, 1999) etc. In (Jenssen 
and Eltoft, 2003), the authors propose a texture 
segmentation method, based on ICA, which is similar 
to the classical approach using  Gabor transform.  
 
This paper focuses on the feature extraction stage in  
a texture recognition application. Thus, by using 
ICA, the texture is decomposed in a set of almost 
independent components and a texture signature is 
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constituted by their negentropies (Lungu et al.,2007). 
The texture recognition is done by calculating a 
distance between the texture and candidates’ 
signatures.  
 
The paper is organized as follows: Section 2 contains 
a brief description of ICA, the definition of texture 
signature based on an approximation of the 
negentropy and a short description of Minkowski 
distances. In Section 3, the proposed method and 
some experimental results are presented. Section 4 
concludes the paper. 

 
 

2. ICA AND NEGENTROPY BASED 
SIGNATURES 

 
The ICA decomposes a random signal into a 
weighted sum of signals whose characteristic is to be 
statistically independent. The resulting signals 
represent the independent components, also called, in 
a series of applications, sources of the signal.  
 
There are different algorithms for obtaining the 
independent components of a signal. Each one 
optimizes a specific criterion, depending on the way 
the independence condition is given. For instance, if 
the degree of statistical independence is measured by 
the gaussianity, then the criterion is the maximization 
of the component nongaussianity. The 
nongaussianity guaranties the independence, since, 
according to the Central Limit Theorem, the sum of 
many independent, identical distributed random 
variables tends to be Gaussian. In other words, the 
independent components of a signal must be more 
nongaussian than the signal itself. Depending on the 
analyzed signal, the components extracted by ICA 
may be completely independent or may preserve 
certain mutual information. 
 
It is known that, among all the possible distributions 
with a given covariance matrix, Gaussian 
distributions have the highest entropy (Hyvärinen et 
al., 2001). Due to this property, the entropy may be 
used to define a measure  of the components’ 
nongaussianity, called negentropy.  is defined 
as follows (Hyvärinen et al., 2001): 

( )sJ
( )sJ

 
(1)  ( ) ( ) ( )sss HHJ Gauss −=

 
where  is the entropy of a component  and  

 is  the entropy  of a Gaussian random 
variable with the same covariance matrix as . The 
definition (1) shows that the negentropy is a 
nonnegative quantity. It is zero only for Gaussian 
components. The FastICA algorithm (http:// 
www.cis.hut.fi/projects/ica/fastica) that we use for 

extracting significant features for textures, looks for 
independent components, by maximizing the 
negentropy (Hyvärinen et al., 2001). Since it is rather 
difficult to estimate the negentropy by using its 
definition (a large number of samples would be 
necessary for a good estimation of the conditional 
entropies in 

( )sH s
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s

( )sH ), the FastICA uses approximations 
of it, one of them being ( Hyvärinen et al., 2001): S
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where ( )938/361 −=k  ,  and ( )π/62/12 −=ak s  
are samples of the component . s
 
In deriving the independent components of a random 
signal , FastICA starts from a set of particular 
realizations of . These realizations are collected in 
a matrix

x
x

X , each row of X  containing the samples 
of a particular realization. FastICA decomposes X  
into a product of two matrices, A  and ( Hyvärinen 
et al., 2001): 

S

 
                              (3) ASX =                                  

 
where  contains the signal’s independent 
components (each row consists of samples of the 
same component) and 

S

A , the weighting coefficients. 
The factorization (3) is optimal in the sense that the 
rows of  have a maximum of statistical 
independence or, equivalently, maximum 
negentropies. If we denote by , the rows of S , by 

 the elements of the mixing matrix 

S

js

jia , A  and by , 
the rows of

ix
X , the equation (3) may be re-written in 

the following way: 
 

(4)  ∑=
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expressing each particular realization of X  as a 
linear combination of the independent componen  

is  (as stated in the beginning of this section). The 
independent components  are all of unit variance 
and have an undetermined sign; their order in matrix 

 is also irrelevant. The number of samples of each 
component is the same as that of a particular 
realization in 

ts

is

S

X  (a natural constraint for having 
compatible dimensions in matrix product (3)). On the 
contrary, the number of the components  is a 
parameter that must be fixed by the user. For a series 
of applications, this number is known a priori. 

is

 
In texture analysis, in order to build the matrix X , 
which is the starting point for FastICA, one needs 
more particular realizations of the analyzed texture.  
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Fig. 1. The sixteen textures used for the experiments (640x640 pixels, 8 bits/pixel). 
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Fig. 2 Four patches of texture T13 (40x40 pixels,      
8 bits/pixel). 

In our approach, as only one image of the texture is 
usually available, serialized texture patches are used 
for obtaining X . Then, in order to have maximum 
accuracy, FastICA is asked to extract a number of 
independent components equal to that of the 
particular realizations. 
 
Statistically, an independent component may be 
described in many ways: by samples, histogram, 
moments etc. Among all possible representations, we 
have chosen the negentropy. The reasons were the 
compactness - the negentropy is a simple numerical 
value - and the fact that it represents the 
independence measure optimized by FastICA. In our 
approach, estimates of the components’ negentropies 
are calculated by using equation (2). Then, the 
obtained negentropies are sorted in descending order 
and assembled into a vector that constitutes the 
texture signature. 
 
One important step in any recognition method is 
represented by the proper selection of a distance 
measure. From the wide variety of distances 
proposed in literature (Rubner et al., 2003), we have 
chosen for our approach, the Minkowski distance 
defined by : 
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Fig. 3. The signature of a zone of texture  T13, 
represented as a negentropy curve. 
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where  and  are the elements of two vectors u  
and  of the same length n and 

iu iv
v r  is a parameter. For 

1=r , the Minkowski distance becomes equal to: 
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which is known as City Block distance. For 2=r , 
the well known Euclidean distance is obtained: 
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3. METHOD DESCRIPTION AND 
EXPERIMENTAL RESULTS 

 
In this section, a novel recognition method, based on 
the ICA algorithm, is presented and tested. By 
considering that a texture is a weighted sum of 
almost statistically independent random signals, a 
signature consisting of its independent components’  

49 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, 2007  ISSN 1221-454X  

 

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sources

N
eg

en
tro

py

 

 

J1
J2
J3
J4
J5
J

 

Fig. 4. The fascicle of negentropy curves obtained for 
the training set and T13 signature (thick line). 
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Fig. 5. The signatures of the 16 textures used in the 
experiments. 

negentropies is associated to the texture. In order to 
discriminate among the textures, their signatures are 
compared by means of Minkowski distance.  
 
For the experiments, 16 textures (Fig. 1) from  
Brodatz album (http:// sipi.usc.edu/database) were 
used. These scans represent natural or hand made 
materials. Each texture image has a resolution of 
640x640 pixels with 256 gray tones (color depth of 8 
bits/pixel). 
 
In order to extract a signature, the texture is divided 
into 25 zones of 120x120 pixels. In the next step, 
each zone is further divided into 9 square patches of 
40x40 pixels. Fig. 2 shows, for example, 4 patches of 
such a zone in texture T13. The patches are serialized 
and constitute the rows of matrix X, the input matrix 
of the FastICA algorithm. As initial guess for the 
mixing matrix A, it is considered a diagonal matrix 
with all the elements of the main diagonal set to one.   
With this structure of matrix X, FastICA can extract, 
at maximum, 9 independent components. In this case, 
the analyzed zone is characterized by a 9 negentropy 
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Fig. 6. Recognition benchmarks for one T13 zone. 

values vector. These negentropy values are sorted in 
descending order and constitute the texture zone 
signature. Fig. 3 shows, for example, the signature of 
a zone from texture T13, represented as a curve in   
2D plot. It is interesting to note that only the first 
four negentropy values are greater then 0.15. This 
means that other 5 components have, in this case, an 
almost Gaussian distribution. As the low  
negentropies values do not contribute to the 
signatures’ distance in a significant way, these almost 
Gaussian components are not essential for texture 
recognition, in this approach.  
 
For each texture, the signatures extracted from the 
first 5 adjacent training zones (the image top stripe) 
constitute a cluster, represented by a fascicle of 
curves in Fig. 4. The center of the cluster, computed 
as the average of the five negentropy signatures, is 
considered the texture signature and is represented by  
a thick line in Fig. 4. In Fig. 5, one may see the 
texture signatures of all the 16 textures used in the 
experiments. The remaining 20 adjacent zones of 
each texture were used for evaluating the recognition 
rate. 
 
Once the training stage completed, the recognition 
may start. For this stage, a test database was 
constituted, by getting together the remaining zones 
(not used for training) of the 16 textures. Thus, a 
database of 320 texture samples was obtained. The 
corresponding 320 signatures were matched to the 16 
texture signatures, by using the Minkowski distance 
and the texture corresponding to the lowest distance 
was declared as the matching one for the tested zone.  
 
Five versions of Minkowski distance have been 
tested: City Block ( 1=r ), Euclidean ( 2=r ) and 
Minkowski distance with , 3=r 4=r  and . Fig. 
6 shows, for example, the recognition benchmarks 
for a zone of texture T13. In this case, all of the 
considered distances gave a correct classification. 
The minimum distance between the zone signature 

5=r
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and texture T13 signature is obtained in the case of 
Minkowski distance with . This is explained by 
the subunitary negentropies of this texture  (r is the 
negentropy power in equation (5)).  

5=r

Table 1. The recognition rates (%) for five versions 
of Minkowski distance.

Textures r=1 r=2 r=3 r=4 r=5 

1 20 20 20 25 25 

2 80 80 90 90 95 

3 90 70 75 75 75 

4 90 90 90 90 90 

5 5 15 15 10 10 

6 90 90 90 90 90 

7 30 30 30 30 30 

8 80 80 80 80 80 

9 55 70 75 70 70 

10 80 75 75 80 80 

11 80 70 75 70 70 

12 30 25 25 25 25 

13 95 95 95 95 95 

14 75 75 70 70 70 

15 90 90 90 95 95 

16 5 5 5 5 5 

Total 60,93 61,25 62,50 62,50 62,81 

 
The recognition rates are given in Table 1. They were 
calculated as the percentage of the correctly 
recognized zones from the 20 available ones of each 
texture. The highest recognition rates were obtained 
for textures T13 and T15 (90%, 95% for all five 
distances). The highest negentropies in the signatures 
of these textures are 2.18 (texture T13) and 0.32 
(texture T15), as shown in Figure 5. They are 
medium and low values comparing with the other 
texture maximum negentropies, which shows that the 
recognition is not dependent on the level of the 
components’ negentropy.  
 
The visual inspection of the textures with low 
recognition rates shows either a strong non-
uniformity of the analyzed sample, as in the case of 
T1 and T7, or a higher periodicity comparing to the 
patch size, like for T12 and T16.  This suggests that 
the patch size should be adapted to the texture type, 
in order to obtain better results. Another 
improvement might be obtained if a sliding window 
would be used for selecting the patches instead of 

using adjacent patches. Such approach would reduce 
the influence of the texture sample non-uniformity.    
 
Concerning the distance versions, in order to see 
which one is more appropriate, a global recognition 
rate has also been estimated (last line in Table 1). It 
was calculated as the percentage of the total number 
of correct recognized zones from the 320 available 
ones. The highest global recognition rates was 
obtained for the Minkowski (r = 5) distance (62.81%) 
and the lowest one for r = 1 (60.93%).  
 
 

4. CONCLUSIONS 
 
The method for texture recognition, proposed in this 
paper, relies on the assumption that a natural texture 
is the result of various random processes, some of 
them being statistically independent. With this 
hypothesis, by using ICA, the textures samples are 
reduced to negentropy based signatures that are 
compared by means of Minkowski distance, in order 
to be classified and recognized. 
 
The experiments have shown a strong dependency of 
recognition rate on the texture type, the obtained 
values varying in the range of 5% to 95%. Another 
conclusion regards the distance used for comparing 
the texture signatures: from the five Minkowski 
distance versions that were tested, the best one 
proved to be Minkowski (r = 5) distance.     
 
Although, for some textures, the recognition rates 
were very high, the global results show a medium 
accuracy of the proposed method. One of the reasons 
must be the errors in negentropy estimation. The 
method attempted to improve this estimation by 
using larger patches of texture (40x40 pixels instead 
of 25x25 pixels) and another model for the mixing 
matrix A (Lungu et al.,2007). By comparison with 
the results obtained by (Lungu et al.,2007) one can 
easy observe a general improvement of the global 
recognition rate. The next step will regard the 
description of the independent components extracted 
by ICA. As the negentropy gives a very poor 
description, other possibilities, like histograms for 
instance, will be investigated. Other types of 
distances will be also tested, in order to have 
meaningful and efficient classification. 
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