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Abstract: This paper presents some preliminary results regarding the ability 
of ICA in analyzing spectrometric data. A set of RLS spectra, measured for 
different concentration DNA solutions, in the presence of the probe 
TbDTPA, is decomposed like in a typical application of source separation 
and processed in order to get a model for RLS process in this case. The 
resulted curves fit well the model obtained by manually measuring and 
averaging the peaks of the RLS spectra. 
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1. INTRODUCTION 
 
In the last two decades, chemometrics gained a well 
defined place among the methods used to assay 
materials, mainly in cosmetics, pharmaceutical and 
food industry. The chemometric methods replace the 
traditional procedures of measuring and interpreting 
the experimental data by an automatic analysis, better 
adapted to the increasing quantity and diversity of 
data provided by the modern instrumental methods. 
 
A lot of definitions have been given to the word 
chemometrics (Workman, 2002). A common one 
describes chemometrics as an application of statistics 

to chemistry, aiming to extract more reliable 
information from raw instrumental data. Indeed, the 
statistical approach is another important advantage of 
chemometrics, since it is known that any   
measurement is intrinsically random. Last, but not 
least, is the ability of chemometric methods to 
analyze multivariate data, i.e. data issued from 
various physical phenomena or measured by different 
instruments. 
 
In chemistry, spectra or chromatograms are 
sometimes inexpensive solutions for a first diagnosis, 
useful for further investigations. The spectra are high 
dimensional data, collecting hundreds or thousands 
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of spectral components. Consequently, their 
processing is very tedious if automatic procedures are 
not used. For this reason, at present, the spectrometry 
coupled with chemometrics, gets an increasing 
popularity, especially in pharmaceutical and food 
industry (Blăgoi et al., 1998; Ilie et al., 1998; 
Kolomiets and Siesler, 2005). 
 
A frequently encountered chemometric aproach is 
pattern recognition. Usually, by means of pattern 
recognition techniques, new experimental data are 
classified in classes with well known properties. In 
this paper, the pattern recognition is used for deriving 
a heuristic model for the Rayleigh Light Scattering  
(RLS) process in the case of  deoxyribonucleic acid 
(DNA) in aqueous solutions. Our approach is based 
on the  Independent Component Analysis (ICA), a 
transform of the same type as Principal Component 
Analysis (PCA), largely used in chemometrics.  The 
difference between ICA and PCA consists in the 
optimization criterion used for analysis. Thus, in 
deriving its basis, PCA minimizes the correlation, 
whilst ICA maximizes the statistical independence. 
Due to this property, ICA may be more useful than 
PCA in analysing data issued from complex 
phenomena, like those involved in RLS 
spectrometry.  
 
We tested our method on RLS spectra, obtained for 
aqueous double stranded calf thymus DNA coupled 
with a small probe molecule - the terbium chelate of 
the diethylentriaminopentaacetic (Tb-DTPA). The 
purpose of our experiments was to test the abilities of 
ICA for chemometric applications and, in particular, 
to define a procedure for the automatic measurement 
of the DNA concentration. In the following sections, 
we present some preliminary results that demonstrate 
that ICA is able to extract significant information for 
this kind of application.  
 

2. THE INDEPENDENT COMPONENT 
ANALYSIS 

ICA is a recently developed method that proved to be 
quite useful in many applications. ICA is based on 
the “latent variables” statistical model, according to 
which the particular realization  of a random 
variable   are linear combinations of the latent 
variables  (Hyvärinen et al., 2001):  
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where   are real coefficients. By definition, the 

random variables  are statistically independent, 
hence the name of “independent components”. They 
are also called “sources of ”. The components  

are latent because they cannot be observed directly. 
The mixing coefficients  are also unknown. 
Consequently, based on the observed particular 
realizations , one should estimate not only the  

components, but also the coefficients . 
Nonetheless, the estimation must be done under as 
general as possible assumptions. 
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In many applications,  is random signal, depending 
on a parameter of time, space etc. In our case, this 
parameter is the wavelength. Without any loss of 
generality, we shall neglect, in the followings, the 
parameter dependency. 

x

 
The equations in (1) may be written as (Hyvärinen et 
al., 2001): 

sAx ⋅=                                (2) 

where A  is a matrix containing the  coefficients 
– called for this reason, mixing matrix – and 

ija ,

x  and 
s  are two column vectors containing the particular 
realizations of  and the independent components 

: 
x
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Based on , an ICA algorithm estimates both the 
matrix 

x
A  and the vector s . The starting point is the 

assumption that  are statistically independent to 
each other. Once matrix 

is
A  estimated, its 

pseudoinverse W   is computed and the estimates of 
the independent components are obtained as follows:      
 

xWy ⋅=                                   (4) 
 
The key of the estimation process is the components’ 
nongaussianity (a consequence of the Central Limit 
Theorem says that the sum of two independent 
identical distristributed random variables is closer to 
a Gaussian  than any distribution of the originating 
variables). Most of ICA algorithms estimate the 
independent components by optimizing a measure of  
nongaussianity (Hyvärinen et al., 2001).   
 
There are various methods to measure the 
nongaussianity of a random variable . One of them 
is the negentropy, defined as (Hyvärinen et al., 
2001):  

y
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where  is a random gaussian variable with the 
same variance as  and  is the entropy. The 
algorithm FastICA, which has been used for our 
experiments, extracts the independent components by 
maximizing the negentropy (http://www.cis.hut.fi/ 
projects/ica/fastica/). The definition in (5) has the 
drawback of a difficult computation. For this reason, 
simpler approximations of negentropy are a better 
choice. FastICA uses the following approximation, 
developed by Hyvarinen (Hyvärinen et al., 2001): 

gaussy
y H

( ) ( ){ } ( ){ }[ ]2υGEyGEyJ −≈               (6) 

where υ  is a gaussian random variable of zero mean 
and variance equal to unity and  is a nonquadratic 
function. 

G

 
The search area of the FastICA is restrained by signal 
whitening, a preprocessing stage encountered in 
many algorithms. By whitening, the number of the 
computed parameters is reduced to half.  
 
The extracted independent components  can be 
estimated until to a multiplicative constant and sign. 
Their order cannot be determined as well. FastICA is 
a projection pursuit method, allowing to evaluate also 
those situations when there are less components  
then particular realizations . 

is

is

jx
 
The data dimensionality reduction by ICA may be 
obtained in various ways. A first option would be to 
extract a smaller number of independent components, 
by taking the risk of loosing significant information. 
A second option would be to extract the maximum 
allowed number of independent components and to 
drop the insignificant ones, by defining a criterion. A 
third option is the synthetic description of sources by 
means, for instance, of negentropy.  This way, a 
source, represented by hundreds of samples, may be 
reduced to single numerical value. In our approach, 
we have used the second method. 
 

3. EXPERIMENTAL RESULTS 
 

The RLS spectra used for tests were obtained from 
different concentration aqueous dsDNA solutions, in 
the presence of a constant concentration of  Tb-
DTPA. The dsDNA was purchased from Merck and 
the Tb-DTPA was obtained by synthesis, at “Horia 
Hulubei” National Institute for Nuclear Engineering. 
In fact, the dsDNA molecule is a nucleoprotein 
extracted and purified from calf thymus, which 
contains besides dsDNA, other biological molecules 
as hystones, polypeptides, separate polynucleotides, 
etc.  
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Fig.1. Experimental RLS spectra at 4 different 
wavelengths. 
 
This substance is a real “cocktail” of absorbing and 
fluorescent emitting molecules that are difficult to be 
separated by ordinary methods. 
 
For the experiments, we used dsDNA solutions of 
five different concentrations: 4.5µg/mL, 7.2µg/mL, 
9µg/mL, 10.8µg/mL and 13.5µg/mL. They were 
obtained in double distilled water from the same 
dsDNA stock solution of 100µg/mL. A constant 
concentration of 0.1mM Tb-DTPA was added to 
each solution. The Tb-DTPA was added to get a 
more accentuated increase of the signal with the 
increase in the dsDNA concentration (Ilie et al., 
2005b). 
 
By using a Perkin Elmer LS 50B spectrofluorimeter, 
working at four different excitation wavelengths, 
seven replicates of the RLS spectrum of the dsDNA-
Tb-DTPA solutions were acquired. Thus, a total of 
35 spectra were collected, each spectrum consisting 
of 400 spectral components at a resolution of 0.5 nm. 
The excitation wavelengths were chosen following 
the terbium (215 nm), dsDNA (255 nm) and protein 
(285 nm) excitation wavelengths; the 235 nm was 
considered a “neutral” excitation wavelength (Ilie et 
al., 2005a). 
 
Fig. 1 presents the RLS spectra obtained for the 
4.5µg/mL dsDNA solution at all the four excitation 
wavelengths. Spectrum (a), corresponding to the 
excitation wavelength of 215 nm, presents a 
maximum at 217 nm, consisting in the RLS signal of 
the substances in solution (dsDNA, Tb-DTPA and 
impurities), a second maximum at 237 nm, 
representing the water Raman band, and a large band 
- ranging approximately between 270nm and 400nm 
– that is a superposition of various emission bands.  
Spectrum (b) presents a first maximum at 237 nm 
(the RLS signal), a second one at 255 nm (the Raman 
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Fig.2. Two common independent components at 
215nm excitation. 
 
 
band of the water) and a rather large emission band 
belonging to dsDNA and impurities. Spectrum (c) 
has the RLS signal at about 258 nm and the Raman 
band at 284 nm, and, finally, spectrum (d) has the 
RLS band at 286 nm and the water Raman peak at 
317 nm. With the increase of the dsDNA 
concentration, the molecular aggregate dsDNA-TB-
DTPA becomes greater, resulting in a higher RLS 
signal (Ilie et al., 2005a, 2005b); the Raman band 
does not depend upon the dsDNA concentration and 
the superposed emission bands are difficult to be 
separated and interpreted in terms of nucleoprotein 
concentration. 
 
In order to put into evidence the DNA contribution, 
we have analyzed the RLS spectra as in a typical 
application of source separation. Since we had not a  
 
theoretical model for the dsDNA-Tb-DTPA spectral 
behaviour, we were constrained to perform a blind 
extraction of spectra sources. In a subsequent stage, 
we tried to identify among them one or more sources 
that are significant for DNA concentration. 
 
The processing was done in two steps: for a fixed 
excitation wavelength, the spectra of each 
concentration were analyzed separately and, 
afterwards, by using the correlation coefficient, the 
sources appearing at all concentrations were 
identified. As DNA is a common constituent for our 
solutions, one expects to find its contribution at all 
concentrations and, consequently, among the 
common sources. We have considered two sources as 
being similar, in the case of a coefficient of 
correlation greater than 0.7 (the extracted 
independent components are only estimates of the 
spectra sources).   
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Fig. 3. Two common independent components at 235 
nm excitation. 
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Fig.4. Two common independent components at 
255nm excitation. 
 
For each wavelength and for each concentration, 
seven replicates of the RLS spectrum were available. 
They have been collected in a matrix X , each row of 
X  containing a replicate. A maximum number of 

independent components were extracted by using the 
FastICA algorithm, i.e. seven for each concentration.  
We asked to FastICA to use a diagonal matrix as 
initial A .  
 
At 215 nm excitation, two sources were present at all 
concentrations. They are shown in Fig. 2. Their 
amplitude and polarity are not significant since ICA 
cannot determine the energy and the sign of the 
extracted components. Only their shape is important. 
The source on the first position consists in a peak 
around 285 nm, whilst the other one seems to be a 
residue composed of signals that could not be 
separated. 
 
Figure 3 shows the common sources found by 
analyzing the spectra at 235 nm excitation. The first 
source exhibits two peaks, one at the excitation 
wavelenght and the other one around 280 nm.  

56 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, 2007  ISSN 1221-454X  

   

200 220 240 260 280 300 320 340 360 380 400
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

285nm

In
te

ns
ity

Wavelength  
 
Fig. 5. A common component at 285 nm excitation. 
 
Again, the second source seems to be a residue.Two 
common sources were found also for the spectra 
recorded at 255 nm excitation (Fig. 4). The first 
source has an isolated peak, slightly displaced by 
respect to the excitation wavelength. The second 
source exhibits wide peaks around 255 and 280 nm 
and, probably, mixed contributions in the upper band. 
 
At 285 nm excitation, a single source has been 
present at all concentrations. It is shown in Fig. 5. 
 
Each set of seven components, extracted by 
analyzing the RLS spectra at fixed excitation 
wavelength and DNA concentration, constitutes a 
basis. It is, of course, an adapted basis. For a fixed 
excitation wavelength, one may use one of the five 
bases (one for each concentration), in order to 
represent the RLS spectra obtained at the same 
excitation wavelength. The spectra projections on the 
coordinate representing a common source might be 
relevant for the DNA contribution to the RLS 
spectrum.  
 
In order to get a model for the DNA contribution at 
each excitation wavelength, we have projected the 
corresponding RLS spectra on a common source and 
we have computed the mean of the projections 
obtained at the same concentration. Although the 
concentration is theoretically the same, random 
variations appear always from one experiment to 
another. By getting the mean, the estimation error 
due to these variations is reduced.  The obtained five 
values are represented, versus the DNA 
concentration, in a plot and, by linearly interpolating 
the values, a polygonal approximation of a curve 
curve was drawn.  
  
From the seven possibilities (Fig. 2, 3 and 4), two 
provided coherent results: the first common source at 
255 nm and the single common source at 285 nm. In 
the first case, the approximated curve obtained by 
linear interpolation is shown in Fig. 6. Its shape fits 
the model obtained by manually measuring and 
averaging the peaks of the RLS spectra at 255 nm (a 
procedure that is, at present, in use) (Ilie, 2007). 
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 Fig. 6. Approximated curve at 255 nm. 
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Fig. 7. Approximated  curve at 285 nm. 

 
The second approximated curve (Fig. 7), obtained at 
285 nm excitation, has the same type of variation, but 
a different convexity. This suggests either another 
DNA type of response, or the response of another 
component, most probably, the protein.      
 
 

4. CONCLUSIONS 
 
The conclusion of our experiments is that ICA is able 
to extract, from RLS spectra, significant information 
for the DNA concentration in aqueous solution. 
Indeed, the spectra projections on the common 
components of ICA basis, has put in evidence a 
dependency that is similar to those obtained by 
manual measurements. Based on these results, we 
intend to develop, in the future, automatic procedures 
for processing data from RLS spectrometry.  
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