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Abstract: In this paper a tracking algorithm for SIFT features in image sequences is 
developed. For each point feature extracted using SIFT algorithm a descriptor is 
computed using information from its neighborhood. Using an algorithm based on 
minimizing the distance between two descriptors tracking point features throughout 
image sequences is engaged. Experimental results, obtained from image sequences that 
capture scaling of different geometrical type object, reveal the performances of the 
tracking algorithm.  
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1. INTRODUCTION 
 
Image features poses different properties that allow 
to be tracked in an image sequence. In a real time 
analysis of the matching accuracy between frames of 
an image sequence the disturbances that need to be 
considered are scaling variance, camera view point 
change, illumination flux. Recovering trajectories of 
moving objects represents an application in which the 
correctness of feature extraction and matching is 
critical.  
 
Thus considering features that are detected in an 
image the difficulty is to track them in a different 
image that was acquired after disturbances affected 
the environment. Different applications of image 
features tracking were considered in the last decade: 
analysis of medical images (Cheung and Hamarneh, 
2007), vehicle guidance (Murarka et al., 2006), 
visual servoing used to control the motion of a robot 
(Chaumette and Hutchinson, 2006). In the case of 
visual servoing features may be acquired from a 
camera that is mounted directly on a robot 
manipulator or is fixed on the workspace. The first 
configuration is called eye-in-hand and will be 
considered in the experimental section of this paper. 
For tracking features applications, SIFT detector 

(Lowe, 2004) is a serious candidate due to its 
properties required in motion analysis: invariant to 
image scale and rotation, robust to change in 
illumination or in 3D viewpoint. 
 
In this paper the development of a tracking algorithm 
for point features extracted from image sequences 
using SIFT algorithm is presented. A descriptor 
based on magnitude and orientation is constructed 
from information precomputed by the SIFT detector. 
Using this descriptor a low level matching algorithm 
is employed. For a feature that represents the search 
model a candidate feature from a different image is 
considered the matching correspondent if it 
minimizes a certain criterion like Euclidian distance. 
The performances of developed tracking algorithm 
were tested on image sequences obtained from a real 
visual servoing system, in different imaging 
conditions: rotation of the camera, view point and 
scale changes. Considering as start a frame were the 
positions of the features are known the analysis was 
conducted in order to establish the number of frames 
that keep stable the extracted SIFT features.  
 
A work environment composed from a six dof ABB 
robot with an eye-in-hand configuration and different 
shaped objects is considered for constructing the 
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image sequences that will be analyzed. The 
considered software for implementing the tracking 
algorithm was Matlab, especially its image 
processing toolbox.  
 
The paper is organized as follows: In Section 2 the 
SIFT detector is presented and in Section 3 the SIFT 
feature descriptor is detailed. Section 4 is dedicated 
to experimental results while Section 5 reveals the 
conclusions of the research. 
 
 

2. SIFT DETECTOR 
 
SIFT detector allows to extract point features from 
images invariant to image scale and rotation. The 
detection of scale-invariant image features algorithm 
(Lowe, 2004) can be decomposed in four stages: two 
for detection of scale-space extreme and accurate 
point features localization and other two for 
orientation assignment and description of point 
features. The first two stages which allow point 
features detection are presented in the sequel. 
 
Detecting invariant locations to scale change of the 
image is based on reaching stable features across all 
possible scales. In order to create the scale space an 
image denoted I(x,y), with I IN M×  size, must be 
part of a convolution with the Gaussian kernel: 
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represents the successive image filtering 
implementation for creating the scale – space. 
 
The parameter σ from (3) is considered to be the 
application: 
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In (5), o represents an octave of the σ axis from the 
scale space, S the number of levels for each octave 

and s the index of a level from the o octave. Then, 
computation for the scale – space of I can be 
implemented recursively. 
 
Starting with I(x,y),  is computed first 
using (3) and is denoted the dimension of the filtered 
image with . Next,  is computed 
using (4) and it is tested the condition s+1=S. If the 
condition is fulfilled, then the image in the next 
octave will have the size defined by: 
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and the algorithm is reiterated using the image 

( )( )SoyxL ,,, σ . After the scale – space was 
computed, it will be created the difference-of-
Gaussian (DoG) space, using the difference of two 
nearby scales separated by a constant multiplicative 
factor k: 

 
 ( ) ( ) ( )σσσ ,,,,,, yxLkyxLyxD −= . (7) 
 
In the DoG space, (that can be interpreted as a 
derivation of the scale – space), we look for positions 

( )στ ,, yx= where the value  is larger than all 
of its 26 neighbours from the 3x3 cube 
neighborhood. The ensemble of these positions is 
denoted with Λ. 

( )τD

 
In the second stage of scale – invariant image feature 
detection, different criteria for establishing the 
stability of each element of Λ are used. First step is to 
establish the difference of Gaussian extreme in the 
neighborhood of each element τ from Λ. Lowe’s 
approach used Taylor expansion up to the quadratic 
terms of the scale- space function: 
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shifted so that the origin is the sample point. 
 
D and its derivatives are evaluated at the sample 
point and τ is the offset from this point. The resulting 

extremum from ( ) 0=
∂

∂
τ
τD  is an interest point in the 

scale – space having the location: 
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In order to reject unstable extrema with low contrast 
the function value at the extremum: 
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is computed and all extrema, with a value of ( )| |D τ$  

less than a threshold α, are eliminated.  
 
Eliminating edge responses is done using the 
eigenvalues of Hessian matrix: 
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which are proportional to the principal curvatures of 
D. The derivatives are estimated taking into account 
differences of neighbor sample points. Denoting with 

Lλ  the eigenvalue with the larger magnitude, with Sλ  

the smaller one and with  the ratio r L

S

λ
λ , it results: 
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Thus, using the inequality: 
 

 
( )
( )

( )2 21
,

Tr r
Det r

+
<

H
H

 (14) 

 
point features with a ratio between the principal 
curvatures greater than threshold r are eliminated. 
 
For each candidate, point feature interpolation of 
nearby data is used to accurately determine its 
position. Point features with low contrast and 
responses along edges are removed. 
 
 

3. TRACKING SIFT FEATURES 
 
Tracking features is one of the most difficult task in 
computer vision. The need of high performance 
algorithms for tracking features generated different 
approaches (Gavrila and Munder, 2007). Next, a 
tracking algorithm based on constructing a 
magnitude and orientation descriptor is detailed. 

Information precomputed using stages described in 
Section 2 like the scale space are used. 
 
 
3.1 SIFT feature descriptor  
 
After keypoint extraction using the first two stage of 
the SIFT algorithm presented above, an invariant 
descriptor construction is revealed as follows. Using 
properties of local neighborhood of each keypoint a 
description based on magnitude and orientation is 
constructed. Considering the scale of the keypoint it 
is selected the L Gaussian smoothed image with the 
closest scale in order to perform the computations in 
an invariant scale manner.  
 
The M magnitude of gradient and θ orientation are 
computed using (Lowe, 2004): 
 

 ( ) ( ) ( )2 2
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An orientation histogram is constructed using 
information from the 16x16 neighborhood of each 
keypoint. Having a 16x16 neighborhood, a decision 
of positioning the “center” of the neighborhood is 
needed. It was considered that the keypoint’s position 
will be (8,8). 
 
After computing the 256 magnitudes and orientations 
the 16x16 neighborhood is divided in 16 blocks with 
4x4 dimensions. For each block the 16 orientations 
and magnitudes are merged using 8 bins that equally 
dived the 360o degrees of the trigonometric circle as 
it is shown in Fig.1. 
 

 
Fig.1 The orientation circle. 
 
The weight (as magnitude) of each orientation is 
computed using: 
 
 ( ) ( ) ( )( )
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where ck is one of the 8 bins and ∆k is a constant of 
22.5o degrees that is used to establish the relation of 
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each orientation θ to ck. For a 4x4 block the resulting 
histogram appears like in Fig.2. 
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If  
g.2 Orientation histogram 

l the information that describes a keypoint will be 
ouped in a 128 length vector. The final step is to 
rmalize the vector values for an invariance 
ponse to different transformations of the analyzed 
ages. 

 Feature tracking algorithm 

low level tracking algorithm is developed using a 
tance to reveal the matching correspondence. 
nsidering an image sequence composed from n 
mes the tracking algorithm can be described 
ratively. For every frame i (i=1,n) the SIFT 
tector is used to find positions of point features. 
ch point feature is characterized by position and 
ale level. Using this information, the SIFT feature 
scriptor presented in section 3.1 is engaged in 
nstructing the features descriptor. Capturing 
tended properties of the SIFT feature by 
nsidering a neighborhood of 16x16 from an scaled 
age the magnitude and orientation of each 256 
els are computed. Next the 16x16 magnitude and 

ientation table is divided in 4x4 blocks. Each block 
resents an orientation histogram obtained after 

mputing weights using equation (16). These 
ights are grouped in vectors of length equal to 
8: 

( )1 2 128, , , , 1,iX x x x i n= K =  (26) 

acking a feature in an image sequence can be 
nsidered using the followings: if the analysis is 
nducted in order to reveal the stability of a feature 
tracted in the first frame or for each two 
nsecutive frames it is necessary to match features. 

is considered a SIFT feature to be model and all the 
er SIFT features from a different frame to be 
tching candidates. Each candidate 
, 1, ,j j n j i= ≠  from the next frame is compared 

ing Euclidian distance: 

 
 ( ),i jd X C α< , (28) 

 
where α is a threshold value that will influence the 
quality of the tracking, then Cj is declared the 
matching correspondent of Xi. In order not to depend 
on the choice of α value and considering the 
evaluation of the performances of SIFT algorithm, it 
was chosen a shortest distance search algorithm that 
find the minimum of the distances between the point 
feature descriptor and all the candidates. 

orient

 
 

4 EXPERIMENTAL RESULTS 
 
For testing the point feature tracking algorithm 
presented in Section 3, grasping applications of 
objects with different structure were considered. The 
experimental set (Fig.3) is composed from an ABB 
six dof robot, a camera mounted on the end effector 
and different objects. Image sequences that present 
the motion of the end effector toward an object were 
acquired and frames were extracted using a sample 
period of 1 sec.  
 

 
 

Fig.3 Experimental set 
 
The considered objects have different shapes: 
rectangular and circular. For each object, an image 
sequence, that captures motions of the eye-in hand 
camera towards the desired position, was acquired. 
Using Matlab software (image processing toolbox 
mainly) each image of the sequence was first 
transform from rgb format to monochrome (gray 
scale). 
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                           a1                                                         a2                                                          a3   

     
                                 b1                                                      b2                                                       b3 
Fig.4 SIFT feature tracking results for a circular object (a1,a2,a3) and a rectangular object (b1,b2,b3) 
 
Frames were extracted from image sequences and 
using the SIFT detector, point features were found 
for each frame. In Fig.4, the frame a1 represents the 
initial position of the camera when the analyzed 
scene contains the circular object and the frame b1 
the initial position of the camera in the case of 
rectangular object. With dots are represented the 
point features detected using SIFT algorithm. Inputs 
in the tracking algorithm are considered the point 
features detected from the first frame of the image 
sequence. For the other frames, descriptors of the 
point features extracted using SIFT algorithm will 
represent the matching candidates in the proposed 
experiment. Using the algorithm presented in Section 
3.1, each point feature was characterized using a 128 
length descriptor. First the magnitude and orientation 
of the 256 pixels in the 16x16 neighborhood were 
computed and one of the results in presented in Fig.5.  
 

 
 
Fi

The next stage represents the splitting of the 16x16 
neighborhood in 4x4 blocks (fig.6a) and for each 4x4 
block an orientation based histogram is constructed 
(fig.6b). 
 

g.5 A 16x16 neighborhood of a SIFT feature in 
which the gradient magnitude and orientation was 
computed. 

 
a) 
 

 
b) 

Fig.6 Splitting the 16x16 neighborhood in 4x4 blocks 
(a) and representing the 4x4 orientation histogram (b) 
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Due to the performances of the SIFT detector (Lazar 
and Burlacu, 2006) through the entire image 
sequence the stability, appearance or disappearance 

nces composed from 10 
ames for the circular object and 12 frames for the 

 the present paper a scale invariant feature tracking 
algorithm was IFT feature a 

escriptor based on magnitude and orientation was 
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