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Abstract: This paper formulates and proves two types of necessary and sufficient 

conditions for the characterization of positively (flow) invariant sets with respect to the 

state-space trajectories of the time-varying (non-autonomous) linear systems in both 

continuous- and discrete-time case. These conditions are expressed in terms of 

inequalities involving the matrix function that defines the system dynamics and a 

constant matrix that defines the shape of the invariant set. The first type of results refers 

to contractive invariant sets which decrease exponentially, and the second one considers 

invariant sets that remain constant. Our approach to non-autonomous systems 

accommodates, as particular cases, the elements of the invariant set analysis already 

elaborated for autonomous systems. 

 

Keywords: time-invariant (autonomous) linear systems, time-varying (non-autonomous) 
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1. INTRODUCTION 

 

The exploration of the invariance properties for the 

free response of dynamical systems has presented a 

great interest for many research groups, starting with 

the mid eighties. This interest is reflected by works 

such as (Pavel, 1984), (Voicu, 1984), (Voicu, 1984), 

(Kiendl et al, 1992), (Boyd et al, 1994), (Michel and 

Wang, 1995), (Hmamed and Benzaouia, 1997), 

(Blanchini, 1999), (Kaszkurewicz and A. Bhaya, 

2000), (Kaczorek, 2002), (Gruyitch et al, 2004), 

(Pastravanu and Voicu, 2005), (Pastravanu and 

Voicu, 2006) and numerous other papers cited 

therein.  

 

This interest was motivated by analysis and synthesis 

objectives, oriented towards the preservation of the 

trajectories inside certain sets defined in the state 

space. The literature shows that most approaches 

focused on the dynamics of time-invariant 

(autonomous) linear systems, by considering 

polyhedral sets invariant with respect to the 

trajectories. The attention paid to this class of 

systems is motivated by the possibility to formulate, 

in terms of system matrices, easy to handle algebraic 

conditions which characterize the invariance 

properties. 
 

Belonging to this research trend, but aiming to 

enlarge the insight into the invariance problem, paper 

(Kiendl et al, 1992) refers to invariant sets defined by 

Hölder vector p-norms, ∞≤≤ p1 . Thus, for a given 

continuous-time (CT) invariant (autonomous) linear 

system 
 

 0 0( ) ( ), ( ) nx t A x t x t x= = ∈Rɺ ,  

 0,t t +∈R , 0t t≥ , n nA ×∈R , (1) 

 

let us consider the solutions n nG ×∈R , rank( )G n= , 

of the inequality 
 

 
1

( ) 0pm GAG
− < , (2) 

 

where  
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is a measure of the matrix 1GAG− . According to 

(Kiendl et al, 1992), the sets built with the solutions 

G of inequality (2) and having the form 

 

 { }, || ||c n
p G pX x Gx c= ∈ ≤R , 0c > , (4) 

 

are invariant with respect to the trajectories of the 

autonomous CT linear system (1), i.e. any trajectory 

that starts in the set will never leave it. 

 

Correspondingly, for a given discrete-time (DT) 

invariant linear system 

 

 0 0( 1) ( ), ( ) nx t A x t x t x+ = = ∈R ,  

 0,t t +∈Z , 0t t≥ , n nA ×∈R , (5) 

 

let us consider the solutions n nG ×∈R , rank( )G n= , 

of the inequality 

 

 
1

|| || 1pGAG
− < , (6) 

 

where  
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 (7) 

 

is the norm of matrix 1GAG− , induced by the Hölder 

vector p-norm || ||p . Similarly to the CT case, 

(Kiendl et al, 1992) shows that the sets of form (4) 

built with the solutions G of inequality (6) are 

invariant with respect to the trajectories of the 

autonomous DT linear system (5). 

 

The objective of the current paper consists in proving 

that similar characterizations of the invariant sets can 

be formulated for time-varying (non-autonomous) 

linear systems in CT and DT. Despite the formal 

analogy of the results, our work is not a trivial 

extension of the autonomous case addressed by 

(Kiendl et al, 1992) [commented in (Hmamed et al, 

1994) and (Loskot et al, 1998)] since the 

mathematical tools for the qualitative analysis of 

time-varying systems are different (as well-known 

from the stability theory). For this class of systems 

we commence our study with the general problem of 

contractive and invariant sets, and, subsequently, the 

constant invariant sets are treated as a particular case. 

Our results are formulated as necessary and sufficient 

conditions for set invariance. For simplicity reasons, 

the whole construction is detailed in Section 2 for CT 

dynamics, and only sketched in Section 3 for the DT 

case, since the latest is merely a parallel mutatis 

mutandis approach to the first one. As commented in 

Section 4, when applied to autonomous systems, our 

findings refine the approach in (Kiendl et al, 1992) 

by pointing out the decreasing rates of the contractive 

invariant sets, in the sense that (Kiendl et al, 1992) 

deals only with constant invariant sets. Our results 

also encompass, as a particular case, the analysis of 

exponentially decreasing invariant sets defined by 

diagonal matrices, which was developed in (Gruyitch 

et al, 2004), (Pastravanu and Voicu, 2006) with 

respect to autonomous linear systems. 

 

 

2. THE CONTINUOUS TIME CASE 

 

Let us consider the time-varying linear system 

described in CT by the differential equation: 
 

 0 0( ) ( ) ( ), ( ) nx t A t x t x t x= = ∈Rɺ , 

 0,t t +∈R , 0t t≥ , (8) 

 

where ( ) n nA t ×∈R  is a continuous matrix function. 

In the state space of non-autonomous system (8), let 

us consider the time-dependent sets defined by: 
 

 
{ }, , ( ) || || ,

0, ,

c n rt
p G r pX t x Gx ce

c t +

= ∈ ≤

> ∈

R

R
 (9) 

 

where n nG ×∈R  is a nonsingular matrix and 0r < . 

 

Definition 1. A set , , ( )c
p G rX t  defined by (9) is flow 

(positively) invariant with respect to system (8), if 

any trajectory initiated inside the set remains inside it 

at any time, i.e 

 

 
0 0 , , 0

0 0 0 , ,

, ( )

, , ( ; , ) ( ).

c
p G r

c
p G r

t x X t

t t t x t t x X t

+

+

∀ ∈ ∀ ∈ ⇒

⇒∀ ∈ > ∈

R

R
■ (10) 

 

In accordance with the nomenclature in (Blanchini, 

1999) and (Gruyitch et al, 2004), a set of form (9) is 

said to be contractive. 

 

Theorem 1. Let 1 p≤ ≤ ∞ . A contractive set 

, , ( )c
p G rX t  given by (9) is positively invariant with 

respect to system (8) if and only if 

 

 t +∀ ∈R , 
1

( ( ) ) 0pm GA t G r
− ≤ < . (11) 

 

Proof. The positive invariance of the sets (9) with 

respect to system (8) is equivalent with the 

invariance of the set 
 

 { }|| || 1n
p pY y y= ∈ ≤R , (12) 
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with respect to the system  
 

 ( ) ( ) ( )y t C t y t=ɺ , 0 0( ) ny t y= ∈R , 

 0,t t +∈R , 0t t≥ , (13) 

 

where 
 

 1( ) ( )C t rI GA t G−= − + , t +∈R . (14) 

 

This equivalence is motivated by the fact that system 

(8) and system (13) are mutually related by the time-

dependent nonsingular transformation  
 

 1( ) ( ) ( )rty t ce G x t−= , t +∈R . (15) 

 

Hence, the proof of Theorem 1 can be reduced to the 

case of system (13), and we have to show that the 

inequality 

 

 t +∀ ∈R , ( ( )) 0pm C t ≤ , (16) 

 

is a necessary and sufficient condition for the 

positive invariance of the set (12) with respect to 

system (14). Obviously, inequality (16) is equivalent 

to inequality (11). 

 

Necessity. The invariance of the set (12) with respect 

to system (13) implies that the function  
 

 ( ) : , ( ) || ||n
p p pV y V y y+→ =R R , (17) 

 

is nonincreasing along each trajectory of system (13). 

Indeed, let y be a solution to (13) and let 0,t t +∈R , 

0t t≥ . Set 0|| ( ) ||py tε = . If 0ε = , then 0( ) 0y t = , 

and hence ( ) 0y t = , meaning that ( ( ))pV y t =  

0( ( )) 0pV y t =  for 0t t≥ . If 0ε > , then 1y yε −=  is 

also a solution to (13) and 0|| ( ) || 1py t = . Since the set 

pY  defined by (12) is invariant with respect to 

system (13), we have || ( ) || 1py t ≤ , or, equivalently 

1|| ( ) || 1py tε − ≤ , such that, we finally obtain the non-

increasing monotonicity of the function ( )pV t , i.e. 

0 0( ( )) || ( ) || || ( ) || ( ( ))p p p pV y t y t y t V y tε= ≤ = =  for 

all 0,t t +∈R , 0t t≥ . 

 

As an intermediary step, let us show that the 

transition matrix of system (13), denoted by 0( , )t tΨΨΨΨ , 

fulfills the inequality: 
 

 0 0 0, , , || ( , ) || 1pt t t t t tΨΨΨΨ+∀ ∈ ≥ ≤R . (18) 

 

Consider arbitrary 0,t t +∈R , 0t t≥ . There exists a 

vector 0
ny ∈R , 0|| || 1py = , such that 0|| ( , ) ||pt t =ΨΨΨΨ  

0 0|| ( , ) ||pt t yΨΨΨΨ . If 0 0( )y t y= , then for ( )y t =  

0 0( , ) ( )t t y tΨΨΨΨ  we have 0|| ( )|| || ( )|| 1p py t y t≤ = , due to 

the nonincreasing monotonicity of ( ) || ||p pV y y=  

along any trajectory of system (13). Consequently, 

0|| ( , ) || || ( ) || 1p pt t y t= ≤ΨΨΨΨ . 

 

Now we shall prove inequality (16), but towards this 

end, we need to show that  
 

     t +∀ ∈R , 
0

|| ( , ) || 1
lim ( ( ))

p
p

t t
m C t

θ

θ

θ

ΨΨΨΨ

↓

+ −
= . (19) 

 

Indeed, if ( )M t  denotes a fundamental matrix of 

system (13), satisfying ( ) ( ) ( )M t C t M t=ɺ , then 

1( , ) ( ) ( ) [ ( ) ( )t t M t M t M t M tθ θ θΨΨΨΨ −+ = + = + +ɺ  

1 1( )] ( ) ( ) ( ) ( )O M t I C t O M tθ θ θ θ θ− −= + + , for all 

0θ ≥ , where 
0

lim ( ) 0O
θ

θ
↓

= . On the other hand, 

1|| ( ) || || ( ) ( ) ||p pI C t O M tθ θ θ −+ − ≤  

1|| ( ) ( ) ( ) ||pI C t O M tθ θ θ −+ + ≤  

1|| ( ) || || ( ) ( ) ||p pI C t O M tθ θ θ −+ + , and we can write 

1
|| ( )|| 1 || ( , ) || 1

|| ( ) ( ) ||
p p

p

I C t t t
O M t

θ θ
θ

θ θ

ΨΨΨΨ−+ − + −
− ≤ ≤  

1
|| ( ) || 1

|| ( ) ( ) ||
p

p

I C t
O M t

θ
θ

θ
−+ −

+ , which yields (19). 

Since || ( , ) || 1pt tθΨΨΨΨ + ≤  for any ,t θ +∈R , from (19) 

we get ( ( )) 0pm C t ≤ . 

 

Sufficiency. Let y be a solution to (13) and let 

t +∈R . Thus, 

0

( ( )) ( ( ))
lim

p pV y t V y t

θ

θ

θ↓

+ −
=  

0

|| ( , ) ( ) || || ( ) ||
lim

p pt t y t y t

θ

θ

θ

ΨΨΨΨ

↓

+ −
≤  

0

|| ( , ) || || ( ) || || ( ) ||
lim

p p pt t y t y t

θ

θ

θ

ΨΨΨΨ

↓

+ −
=  

0

|| ( , ) || 1
lim || ( ) || ( ( )) || ( ) || 0

p
p p p

t t
y t m C t y t

θ

θ

θ

ΨΨΨΨ

↓

+ −
= ≤  

meaning that ( ( ))pV y t  is nonincreasing along each 

trajectory of (13) if condition (16) is satisfied. 

 

Assume, by contradiction, that the set pY  defined by 

(12) is not invariant with respect to system (13). Let y 

solve (13) and violate the invariance condition, i.e. 

there exists ,t t +
∗ ∗∗∈R , t t∗ ∗∗<  such that 

|| ( )|| 1py t∗ ≤  and || ( )|| 1py t ∗∗ > . This means 

( ( )) ( ( ))p pV y t V y t∗∗ ∗>  which contradicts the 

hypothesis that ( ( ))pV y t  is nonincreasing along each 

trajectory of system (13).              ■ 
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On the same mathematical bases, a separate result 

can be derived for constant invariant sets of form (4). 

 

Corollary 1. Let 1 p≤ ≤ ∞ . A constant set ,
c
p GX  of 

form (4) is positively invariant with respect to system 

(8) if and only if 
 

 
1( ( ) ) 0pm GA t G− ≤ . (20) 

 

Proof. It is constructed along the same lines as the 

proof of Theorem 1, by considering 0r = .            ■ 

 

 

3. THE DISCRETE TIME CASE 

 

Let us consider the DT non-autonomous linear 

system described by the difference equation: 
 

 0 0( 1) ( ) ( ), ( ) nx t A t x t x t x+ = = ∈R , 

 0,t t +∈Z , 0t t≥ , (21) 

 

where ( ) n nA t ×∈R . In the state space of the time-

varying system (21), let us consider the time-

dependent sets defined by: 
 

 
{ }, , ( ) || || ,

0, ,

c n t
p G r pX t x Gx cr

c t +

= ∈ ≤

> ∈

R

Z
 (22) 

 

where n nG ×∈R  is a nonsingular matrix and 

0 1r< < . As stated in the introductory part of our 

paper, the approach to the CT case goes mutatis 

mutandis in the DT case. For that reason, we will 

only outline the necessary adjustments of the 

framework presented in Section 2. 

 

Definition 2. A set , , ( )c
p G rX t  defined by (22) is flow 

(positively) invariant with respect to system (21), if 

any trajectory initiated inside the set remains inside it 

at any time, i.e 

 

     
0 0 , , 0

0 0 0 , ,

, ( )

, , ( ; , ) ( ).

c
p G r

c
p G r

t x X t

t t t x t t x X t

+

+

∀ ∈ ∀ ∈ ⇒

⇒∀ ∈ > ∈

Z

Z
 ■ (23) 

 

Similar to the CT case, a set of form (22) is said to be 

contractive. 
 

Theorem 2. Let 1 p≤ ≤ ∞ . A contractive set 

, , ( )
c
p G rX t  defined by (22) is positively invariant 

with respect to system (21) if and only if 
 

 t +∀ ∈Z , 
1

|| ( ) || 1pGA t G r− ≤ < . (24) 

 

Proof. The positive invariance of the sets (22) with 

respect to system (21) is equivalent with the 

invariance of the set { }|| || 1n
p pY y y= ∈ ≤R  

defined by (12) with respect to the system 

 

 ( 1) ( ) ( )y t C t y t+ = , 0 0( ) ny t y= ∈R , 

 0,t t +∈Z , 0t t≥ , (25) 

 

where 

 

 1 1( ) ( )C t r GA t G− −= , t +∈Z . (26) 

 

Note that systems (21) and (25) are mutually related 

by the time-dependent nonsingular transformation 

 

 1( ) ( ) ( )ty t cr G x t−= , t +∈Z . (27) 

 

The proof of Theorem 2 can be reduced to the case of 

system (25), and we have to show that inequality 

 

 t +∀ ∈Z , || ( ) || 1pC t ≤ , (28) 

 

is a necessary and sufficient condition for the 

positive invariance of the set (12) with respect to 

system (25). Obviously, inequalities (28) and (24) are 

equivalent. 

 

Necessity. The invariance of the set (12) with respect 

to system (25) implies that the function 

( ) :
n

pV y +→R R , ( ) || ||p pV y y= , defined by (17), is 

nonincreasing along each trajectory of system (25). 

Consider arbitrary 0t t += ∈Z . There exists a vector 

0
ny ∈R , 0|| || 1py = , such that 0|| ( )|| || ( ) ||p pC t C t y= . 

If 0( )y t y= , then 0( 1) ( )y t C t y+ = . Due to the 

nonincreasing monotonicity of ( ) || ||p pV y y=  along 

any trajectory of system (25), we have || ( 1)||py t + ≤  

0|| ( )|| || || 1p py t y= = . Thus, || ( )|| || ( 1)|| 1p pC t y t= + ≤ . 

 

Sufficiency. Let y be a solution to (25) and let t +∈Z . 

Hence, ( ( 1)) || ( ) ( )|| || ( )|| || ( )||p p p pV y t C t y t C t y t+ = ≤ ≤  

|| ( ) || ( ( ))p py t V y t= , meaning that function ( )pV y  is 

nonincreasing along each trajectory of (25). Assume, 

by contradiction, that the set pY  defined by (12) is 

not invariant with respect to system (25). Therefore a 

solution y to (25) can be found that violates the 

invariance condition, i.e. there exist ,t t +
∗ ∗∗∈R , 

t t∗ ∗∗<  such that || ( )|| 1py t∗ ≤  and || ( )|| 1py t ∗∗ > . 

This implies ( ( )) ( ( ))p pV y t V y t∗∗ ∗> , contradicting 

the hypothesis that ( ( ))pV y t  is nonincreasing along 

each trajectory of system (25).             ■ 
 

For constant invariant sets of form (4), the following 

result can be derived. 
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Corollary 2. Let 1 p≤ ≤ ∞ . A constant set ,
c
p GX  of 

form (4) is positively invariant with respect to DT 

system (22) if and only if 

 
1|| ( ) || 1pGA t G− ≤ . (29) 

 

Proof. It is constructed along the same lines as the 

proof of Theorem 2, by considering 1r = .            ■ 

 

 

4. LINKS WITH PREVIOUS RESULTS 

 

Remark 1. As expected, Corollary 1 in the CT case, 

accommodates the invariance problems addressed by 

(Kiendl, 1992) for the autonomous system (1) as a 

particular situation. Moreover, unlike (Kiendl, 1992) 

providing a sufficient condition by the strict 

inequality (2), Corollary 1 shows that the non-strict 

inequality (20) is necessary and sufficient for 

constant invariant sets. As a matter of fact, Theorem 

1 particularized for the autonomous systems (1) 

suggests that the strict inequality (2) used in (Kiendl, 

1992) represents a necessary and sufficient condition 

for contractive invariant sets. Similarly, in the DT 

case, Corollary 2 accommodates the invariance 

problems addressed by (Kiendl, 1992) for the 

autonomous system (5) as a particular situation. 

Moreover, Corollary 2 shows that the non-strict 

inequality (29) is necessary and sufficient for 

constant invariant sets, unlike (Kiendl, 1992) that 

provides a sufficient condition by the strict inequality 

(6). Theorem 2 particularized for the autonomous 

systems (5) suggests that the strict inequality (6) used 

in (Kiendl, 1992) represents a necessary and 

sufficient condition for contractive invariant sets.    ■ 

 

Remark 2. The incomplete interpretation of the strict 

inequalities (2) and (6) given in (Kiendl, 1992) is due 

to the main objective of (Kiendl, 1992) looking for 

strong Lyapunov functions for the autonomous 

systems (1) and (5). Based on the proofs presented 

above for Theorems 1 and 2 (whose principles are 

also valid for the proofs of the two Corollaries) we 

are able to offer further details. For the sake of 

brevity, these particulars are handed only in the case 

of CT systems, but they can easily be paralleled to 

the case of DT systems. 

 

(i) In the case of constant invariant sets of form (4), 

the equivalence transformation (15) between systems 

(8) and (13) with 0r =  yields || ( ) ||pGx t =  

( ( ))pcV y t , which, together with the non-increasing 

monotonicity of ( )pV y  defined by (17), shows that 

 

 ( ) : , ( ) || ||n
p p pW x W x Gx+→ =R R  (30) 

 

is nonincreasing along each trajectory of the non-

autonomous system (8). Since G is a full rank matrix, 

( )pW x  is positive definite, and, consequently, it is a 

weak Lyapunov function. Hence, the equilibrium 

{0}x =  of system (8) is stable. This is in full 

accordance with the non-strict inequality (21) which 

provides all nonsingular matrices n nG ×∈R  defining 

constant sets of form (4), invariant with respect to the 

linear system (8). 

 

(ii) In the case of contractive invariant sets of form 

(9), the time-dependent equivalence transformation 

(15) between systems (8) and (13) with 0r <  yields 

|| ( ) || ( ( ))rt
p pGx t ce V y t= , which, together with the 

non-increasing monotonicity of ( )pV y  defined by 

(17), shows that ( )pW x  defined by (30) is decreasing 

along each trajectory of the non-autonomous system 

(8). Since G is a full rank matrix, ( )pW x  is positive 

definite, and, consequently, it is a strong Lyapunov 

function. Hence, the equilibrium {0}x =  of system 

(8) is asymptotically stable. This is in full accordance 

with the strict inequality (16), or, equivalently (11), 

which provides all nonsingular matrices n nG ×∈R  

defining contractive sets of form (9), invariant with 

respect to the linear system (8). The discussed 

inequality in form (11) includes the concrete value of 

the decreasing factor 0r <  that describes the 

contraction of the invariant set; this explains the 

differences between the invariant sets built with 

various matrices G that satisfy inequality (11).        ■ 

 

Remark 3. Theorems 1 also encompasses, as 

particular cases, the results formulated for CT 

autonomous systems in (Gruyitch et al, 2004) which 

considered contractive invariant sets of form (9) 

defined by diagonal matrices G with positive entries, 

for {1,2, }p∈ ∞ . Along the same line of remark, the 

results presented for CT and DT autonomous systems 

in (Pastravanu and Voicu, 2006), which considered 

contractive invariant sets of form (9) and (22), 

respectively, defined by diagonal matrices G with 

positive entries, for 1 p≤ ≤ ∞ , are also covered by 

Theorems 1 and 2 respectively.             ■ 

 

 

5. CONCLUDING REMARKS 

 

The theorems and corollaries presented in this paper 

provide criteria for testing or constructing sets which 

are invariant with respect to the trajectories of non-

autonomous linear systems in CT or DT. These 

criteria accommodate, as particular cases, the results 

already known for autonomous linear systems. From 

the methodological point of view, our approach 

points out the role of matrix measures in the analysis 

of the invariant sets for CT systems, meaning a 

reformulation of the classical tangency condition in 

terms of the operators defining the linear systems 

dynamics. For revealing the invariance properties of 

DT systems, a parallel development can be devised 

based on matrix norms. 
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