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Abstract: A position drive system with D.C. motor is operated using conventional 
position, speed and current controls. These controls provide a good dynamic and steady-
state behaviour, but they do not take in consideration the conversion’s efficiency. It is very 
well known that in the transient behaviour, as starting and stopping, the conversion 
efficiency is diminished to the value about 50 per cent, while in the steady-state it is 
greater. The main goal of the paper is to develop a new optimal type control law, which 
minimizes the drawn energy used for the covering of a given position trajectory. The 
synthesis of the optimal energetic control law is accomplished by comparing the two 
control methods, conventional and optimal. The experimental results, via the simulation 
procedure, are also presented.  
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       1.      INTRODUCTION 
 

The dynamic periods for a position drive system, 
PDS, as starting and stopping, are very often resorted 
to. These frequent dynamic periods diminish 
considerable the conversion efficiency since this is 
smaller in the dynamic state than in the steady-state. 
The conventional control using P and/or PI 
controllers takes into account a good dynamic 
behaviour with respect to the input and the 
perturbation of the system, as well as the time for the 
realization of the given trajectory as being most 
important. Taking into consideration these 
requirements in the paper, an optimal control 
approach oriented to minimize the expenditure 
energy is developed. Using a model of a D.C. 
position drive system and adequate performance 
functional criteria, the non-recursive solution of the 
Riccati type differential matrix equation, EDMR, is 
involved as control law for the formulated problem. 
The solution, via simulation procedure, is applied to 
the PDS supplied from A.C. – D.C. four quadrants 
converter. 
 
 

2.           PROBLEM FORMULATION 
 
 2.1. The model of a PDS 
 

A constant field DC position drive system 
controlled by armature voltage, Fig.1, is an invariant 
controllable dynamic system described by the 
differential equations 
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Fig.1 PDS model 
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In the space state the differential equations (1) 

gets the form 

                  (2) ( ) ( ) ( ) ( )= + +x Ax Bu Gw
o

t t t t
where:  
The state is given by 

                  (3) [ ]( ) ( ) ( ) ( )=x T
At t t i tε ω

• ( )tε , ( )tω  and  are the position, 
angular speed and armature current; 

( )Ai t

• is the armature voltage as input vector; ( )u t
•  is the load torque  as the 

perturbation vector; 
( )w t ( )Sm t

•  and G  are the adequate constant 
matrices. 

,A B

 
2.2 The quadratic performance criteria 
 

The control problem consists in finding an 
admissible armature voltage , which transfers 
the system (2) from the initial state 

* ( )u t

              (4) [ ](0) 0 0 0=x T

to a desired state 

                                    (5) [1 1 0 0=x Tε ]
in the fixed time , 1t 1ε  being the desired final 
position, and minimizies the energy consumed. 

In order to minimize the drawn energy, the 
quadratic performance criteria in the form 
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is associated to system (2), where weighting matrices 
and  are 3x3 positive semidefinite matrices and 
 is a 1x1 positive definite matrix. 

 S Q
R

The purpose of the first term of the criteria (6) is 
to guarantee a good dynamic behaviour and a small 
square error between the final free state  and 
the desired final state (5). If the matrix S  has the 
form 

1( )x t

0 0
0 0 0
0 0 0
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the first term of criteria (6), often called the terminal 
cost, is given by 

[ ] [ ] [ ]2
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In the same way, by seting 
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the second term of the equation (6) becomes 
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The term most important for consumed energy is 
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0
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Aq i t dt WRA          (11) 

this represents the energy expended in the armature 
winding, the most important constituent part of the 
drive dissipation energy. 

The term 
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represents the accumulated inertial energy. The term 
minimizes this energy in the aim of preserving the 
angular speed ( )tω  within the rated limits. In the 
same way the third term 
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will assure a smoothing dynamic for the actual 
position ( )tε . 

The last term 
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where,                     [ ]=R r           (15) 
keeps the control , supply armature voltage, 
within the admissible limits. 

( )u t

The specified terminal time  required to realize 
the final state

1t

1ε , corresponds to the actual duration 
of the dynamic rating obtained using conventional 
control. Therefore, the optimal control problem is 
with free end point, specified terminal time and 
without constraints. 
 
2.3 The solutions of the problem 
 

The solution of the problem exists and is unique 
if the system (1) is controllable, completely 
observable and the weighting matrices carry out the 
conditions  and  [Athans, 1966]. ,≥ ≥Q 0 S 0 >R 0

The solution of the optimal problem is given by 
          * ( ) ( )−= − 1 Tu R B yt t

G

         (16) 
( )x t and , the cost vector, being solutions of  

the canonical system, Euler-Lagrange,  
( )y t
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with the boundary conditions: the initial state, 
equation (4), and the transversality condition 
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Taken in consideration the transversality 
condition (18) the cost vector can be written as 
[Rosu, 1999] 

     y P          (19) ( ) ( ) ( ) ( )= +
where  is the solution of the EDMR ( )P t

   P P         (20) ( ) ( ) ( )
( ) ( )−

+ + −
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and is the solution of the associate differential 
vector equation, EDVA, 

( )v t

1( ) ( ) ( ) ( ) ( ) ( )−+ − +T Tv A v P BR B v P Gw
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t t t t t t (21) 
Because of the boundary condition (18) the 

solutions P and must be calculate recursively 
and backward in the time, from  to . On the other 
hand the equations (20) and (21) are nonlinear. The 
schema for integration needs also all the future 
values of the perturbation vector , including 

, which is unrealizable. Obviously, the system 
(17) cannot be solved. 

( )t ( )v t

1t 0

( )w t

1( )w t

In [Rosu,1999] and [Rosu,1985] was proposed a 
non-recursive solution which can be computed at any 
time , if the state and the perturbation w  
are known at the moment of calculus, in the form 
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 -  and 1( −1K t t 2 1( −K t t  are calculate like 
EDMR solution having the similar forms [2]; 
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is the eigenvvalues matrix and  are the 
parts of the eigenvectors matrix; 

......11 22W W

-    1= −t tτ           (25) 
the remaining time until final moment . 1t

The solution (22) has three components: the first 
term is the state feedback; the second is the forcing 
component to achieve the desired final state ; the 
third is the compensating feed-forward of the 
perturbation . The solution is a non-recursive 
and can be computed at any time  and from initial 
time  to the final time . The solution needs 

that the state  x  and the perturbation to be 
known at the integration time .  

1x

( )w t
t

0=t 1t

( )t ( )w t
t

In the above formulation the optimal problem is 
one without constraints. Obviously there are 
magnitude limitations for the armature voltage and 
current and for the angular speed at the rated or 
maximum admissible values. The introduction of the 
constraints transforms the problem in nonlinear one, 
the solution finding becoming difficult, even 
impossible.  The restrictions of the magnitude for the 
control and the state could be solved by the adequate 
choosing the weighting matrices Q and R 
[Rosu,1999]. 

The structure of the optimal control is presented 
in Fig.2. 
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Fig.2 The structure of the optimal control  
 
3.         SIMULATION RESULTS 

 
The model (1) and the optimal control law (22) 

were numerically simulated using Z-transform with 
zero order hold and Matlab-Simulink software for a 
PDS with the parameters:  

• D.C.motor:

 
2.2 ,420 ,6.95 ,192.586 / sec,

40.5 , 10.7 ;= = ΩA A

kW V A rad
L mH R

• Maximum load torque:12.47 ; Nm
• Maximum armature current 

2 13.9= =AM ANI I A ; 

• Total inertia: 20.026Kgm ; 
• Converter a.c.-d.c. 

: 0 520 ,25 ,4 , 42± =DV A quadrants k ; 
• The viscous friction Fν  was neglected. 
The conventional control for the PDS model (1) 

was simulated for a transition from  to the final 
position 

0
1 500radε =  at the rated load torque 

12.47=Sm Nm  and the step position input. In Fig.3 
are presented the variations, in order, of the rotor 
voltage and current, angular speed and position. All 
the components of the dynamic behaviour are normal 
and the dynamic is very good, with the final time 
being  seconds. 3.2

In Fig.4 the variations of the same parameters 
for the optimal control are presented. The simulated 
conditions are the same i.e.: final 
position 1 500radε = ; the final time  is 
physically workable, selected  by comparison with 

1 3.2sec=t
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conventional control. The weighting matrices are 
chosen via a procedure presented in [Rosu,1999]. 
There are many differences between the two control 
laws. The angular speed variation obtained using 
optimal control is not the trapezoidal form given by 
the conventional control. The angular speed has a 
continuous variation, for both increase and decrease. 
The step of load torque from  to 
rated torque  at the angular speed  

2.47=SOm Nm
12.47=Sm Nm

100 / sec≥ radω  does not modify the angular speed 
increasing because of the compensating feed-forward 
of the perturbation , but changes the voltage and 
current, Fig.5. 

( )w t

The variations of the armature voltage and 
current are also completely different, but the both are 
within the admissible limits. There are some 
differences regarding the position variation, but they 
are negligible. The final desired position is achieved 
with a minimum error 

1 1( ) 500 499.6848 0.3152− = − =t radε ε (26) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
which is 0. , a very good response. Also the 
dynamic behaviour of the drive system is a normal 
one and physically realisable. 

063%

The energy analysis is presented in Table 1 and 
2 where: 
• IW  is the input, drawn energy, of the system; 
•  is the output energy, i.e. the mechanically 
energy for the realisation of the trajectory 

OW

10 (→ t )ε ; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Conventional control, mS=12.47Nm. 
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• RAW - the copper armature losses energy, the 
most important constituent part of the drive 
dissipation energy; 
• JW - the accumulated energy in the inertia 
masses; 
• LW  - the accumulated energy in the armature 
inductance; 

• 1( )tε  - the final position. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig.4. Optimal control, mS=12.47Nm 

Fig.5. Optimal control, mS0=2.47Nm and 
mS =12.47Nm 
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         Tabel 1 

Control type Load torque, mS 
[Nm] 

WI
[J] 

WO
[J] 

WRA
[J] 

WJ 
[J] 

WL 
[J] 

ε(t1) 
[rad] 

Conventional 12.47 8423.8 6229.4 2194.0 1.1263 0.4683 499.5471 
Optimal 12.47 8173.8 6231.1 1947.1 0.1702 0.2658 499.6848 

Absolute difference  -250.0 +1.7 -246.9 -0.956 -0.202 -0.1377 
%  -2.96 +0.02 -11.25    

        Tabel 2 
Control type Load torque, mS

[Nm] 
WI 
[J] 

WO 
[J] 

WRA 
[J] 

WJ 
[J] 

WL 
[J] 

  ε(t1) 
[rad] 

Conventional 2.47 to 12.47 8213.8 6172.5 2040.9 1.17 0.409 499.7409 
Optimal 2.47 to 12.47 7738.5 6090.6 1648.8 0.169 0.181 499.6848 

Absolute difference  -475.3 -81.9 -392.1 -1.00 -0.23 +0.0561 
%  -5.78 -1.33 -19.21    

 
 

There are important differences between the 
two controls. The differences between JW and 

LW are insignificant but correct because the two 
energies measure the final states of the angular 
speed and current which are appreciatively the 
same. The output energies  have about the same 
values since they measure the mechanical work 
effectuated to realise the displacement

OW

1( )tε , which 
is also similar in the two cases. The great difference 
is for the input energy, from 2.96% to 5.78%, less 
for optimal control than for conventional. The 
greater per cent reductions are for the copper 
armature losses energy RAW , from 11.25% to 
19.21%. This result is very important for the motor. 
The less solicitation of the motor, caused by the 
armature current form, allows an important 
overload and a better motor using. 

 
 

4. CONCLUSION 
 

The proposed optimal energetic control has the 
following features: 
• it is a non-recursive one; 
• it provides a significant reduction of the drawn 

and the copper armature losses energies; 
• it assures high dynamic performances, without 

overshoots, fast compensation of the load 
torque and a smooth dynamic response; 

• it can be implemented using either a 
conventional automation with some 
modifications or a new control structure. 
In conclusion the optimal control approach 

proposed in the paper is an energetic one, which 
increases significantly the conversion efficiency of 
the PDS. 
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