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Abstract — To guarantee a good productivity and a better quality of the industrial 
systems, it is necessary to know the evolution of its various parameters but also its 
operation mode. The main goal of this work is to carry out a study to improve a flatness 
control in a reversing cold rolling mill, precisely the web winding system part. We 
designate by a winding process any system applying the cycles of unwinding, transport, 
treatment and winding to various flat products. This system knows several constraints 
such as the thermal effects caused by the frictions, and the mechanical effects provoked 
by metal elongation, that generates dysfunctions due to the influence of the process 
conditions. For this installations type, the various automatisms functions, often very 
advanced, are realized in modular systems with distributed architecture. Our main goal 
is to obtain a precise thickness, with the best possible regularity. With this intention, we 
are preceded to the modelling and the control of the nonlinear dynamic behaviour of a 
web winding process. 

Key-words: Web winding system (WWS), Modelling, Nonlinear Control, Linearizing 
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1. INTRODUCTION 

In all cases of winding or unwinding of a material in 
strip, the flatness difficulty arises. This rolling 
problem is specific to the material type that it is more 
or less elastic, deformable or fragile. The rolling 
velocity determines also the velocity of metal 
deformation. Indeed, the principal motors behaviour 
of a web winding is defined by the intensity of the 
armature current and the evolution of the rotation 
velocity of the working rolls during one pass. 

The dynamics of a web winding system (wws) is 
described by its strongly nonlinear behavior. 
Considering the complexity of the system due to 
nonlinearity and the strong coupling between the web 
velocity and the web tension, it is more convenient to 
linearize this wws. However, this model remains very 
depend on the set point considered and especially on 
the variation rate of nonlinearities. This situation 
pushed the researchers to be directed more and more 

towards the techniques of the nonlinear control based 
on the differential geometry theory. At present, 
several methods covering the subject are available 
(Slotine, et al., 1991, Marino, et al., 1995, Grcar, et 
al., 1996). Among these methods, one finds the 
technique of linearization within the meaning of the 
input-outputs introduced by (Isidori 1989). Our work 
consists in presenting this principle of the technique 
in order to control both the web velocity and web 
tensions of wws and thereafter apprehending the 
industrial problems occurring of the rolling 
operation. 

2. WWS DESCRIPTION 

The web system is very important in a rolling mill, 
because its parameters determine the strip quality. 
Among its parameters, we quote: 

• The entry and exit of the traction forces. 

This paper was recommended for publication by Ion Bivol 
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• The entry and exit velocities ensured by the 

winders motors, and the work rolls velocity 
(Fig.1). 

• The pressure force or the variations between 
the work rolls and their parallelism. 

The variation of the exit strip flatness evolves 
because of the thermal dilation of the cylinders (El 
Hamzaoui, et al., 2006; Rabbah and Bensassi, 2006), 
but also due to the elasticity forces (Schmitz and 
Herman, 1995). To avoid this phenomenon, the 
traction forces are applied to limit the elasticity of the 
rolled material. 

The thickness control is ensured by programmable 
automats, which are called AGC (Automatic Gauge 
Control system) (Ueno and Sorao, 2004). Their goal 
is to maintain the strip thickness uniform in spite of 
the acting factors to change it. Considering the 
complexity of the Cold Rolling System (CRM), the 
modeling and the control of the WWS should be 
studied to minimize the flatness defaults. With this 
intention, we start with the development of a 
mathematical model describing the dynamic behavior 
of the system. 

 
Fig.1. Interactions between the components of the 
cold rolling system. 

 
 

Fig.2. Synoptic model of the Web Winding System. 

 
3. MATHEMATICAL MODEL 

In this section, we present the constitutive model 
parts of the Winders/Strip during cold rolling 
(Rabbah and Bensassi, 2007). 

In usual practice, the metal translates to the roll gap 
at a V1 speed (Fig.2) lower than the linear 
circumferential speed of the work rolls V2, and exit 
with V3>V2. Close to the roll gap entry, the metal 
advances less quickly than the cylinder. Friction 
tends to involve it downstream. But close to the 
exit, the metal product goes more quickly. It is thus 
slowed down by the cylinders (resistant friction) (P. 
Montmitonnet, et al., 2001). Therefore, when 

velocities change, traction is modified and results a 
supplementary elongation. 
An empirical law (J. P. Louis, et al., 1989) gives 
the web tension between two rolls driven by two 
electric motors: 

(1) ).(.. 1 iii
i VV

L
SET

L
V

dt
dT

−+−= +
    

Where, V: is the linear web velocity (m/s); iω : is 
the rotational speed of ith roll (m/s); Ti: is the web 
tension between i and i+1 roll (N); L: is the web 
length (m); E: is the Young’s modulus (Kg/mm²); 
S: is the web section (mm²). 
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3.1. Roll Dynamics Modelling 

The winders radius and inertia are expressed as 
function of the time during the winding process (F. 
Claveau, 2005; S. Leirens, et al., 2003). The 
variation of the radius r is given by the following 
equation: 

(2) ω
π

.
2

)( htr −=&                                                                    

Where h is the strip thickness.  
As radius r, inertia J is time-varying too (Leirens, et 
al., 2003): 

(3) ( )   ωω ... JJJ && +=Ω
•

 

with : 

(4) 
rollmotor JJJ +=   

so : 

(5) ))((
2

..)( 44
ai

a
ai rtrlJtJ −+=

ρπ                     

Where la represents the strip width, Jai and rai are 
the inertia and the radius of the ith motors axis 
respectively. 
J can be written as:  wich is the sum 
of a constant and variable inertia. Hence: 

varJJJ const +=

(6) 4

2
..)( ai

a
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−=                                 

(7) 4
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Differentiating (7) with respect to time: 
(8)                                               3....2 rrlJ a &

& ρπ=

The dynamic principle applied to a rotation 
movement gives: 

(9) ( )                 ωω .. fCCJ r −−=
•

where: C: is the motor torque (N.m); f: is the 
coefficient of viscous friction (N.m.s/rad); Cr: is the 
resistive torque (N.m). Assuming that the inertias 
change slowly compared to the strip dynamics, 
therefore inertia is considered as constant now. The 
expression of rotational speed becomes: 

(10) ωω .. fCCJ r −−=&             

We consider that the winders Motors are linear, 
continuous, with constant coefficients, i.e., 
presenting any saturation effects or armature 
reaction. In this research an armature-controlled DC 
motor, traditionally used in industrial rolling mill, is 
used. The complete model of an armature-

controlled DC permanent torque motor, with 
electric, mechanics and joint equations are 
presented below. 

 

• Electric equation :  
(11) E

dt
dILIRU ++= ..     

with: ω= .kE e  ; U: is the supply voltage of the 

armature (V); R: is the armature resistance (Ω ); I: 
is the armature current (A); ke: is the torque 
coefficient (N.m/A); E: is the electromotive force 
(V); ω  : is the rotational speed (rad/s). 
• Coupling equation :  

(12) IkC c .=     

with: kkk ec ==  

By introducing equations (11) and (12) into (10) 
and applying the Laplace transform, we obtain: 
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We pose: 

• Static gain: 
fRk

kkm .2 +
= . 

• Electric time-constant: 
R
L

e =τ . 

• Electromechanical time-constant: 

fRk
JR

em .
.
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and we note: 
fRk
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.

.
2 +

=µ . 

The expression (13) of rotational speed becomes: 
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While neglecting :µ and f ; thus : eτ  in front of 
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While applying inverse Laplace transform to the 
last expression, we obtain the final expression of 
the rotational speed as: 

(16) )(.
.
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k

C
J

t
dt

td

em
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The resistive torque Cr consists of several couple: 
webpir CCCC ++= , with: 
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While replacing it in the equation (16), it becomes: 
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Using results above (equations (1) and (17)), with 
neglecting the inertia and losses torque, the model 
below was built: 
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Table 1 contains the operating condition used in 
this analysis. 

Table 1 Parameters of the operating conditions.

Web length between winder and 
unwinder 

10.15 m 

Young’s modulus 0.16 109 
kg/m² 

Web section 0.19 mm² 
Sliding coefficient 0.8 
Strip or web thickness 1.6 mm 
Strip or web width (largeur) 600 mm 
Diameter or work rolls 0.45 m 
Nominal torque of 
unwinding/winding motors 

700 kN.m 

Nominal velocity of 
unwinding/winding motors 

120 Rpm 

Rolling speed 1400 mpm 
 

4. NONLINEAR CONTROL OF THE WWS 
TENSIONS AND VELOCITY  

This work part illustrates a direct application of the 
nonlinear control system of the WWS concerning 
the reversing cold rolling mill. We determine the 
relative degree of each control output to establish 
the decoupling matrix then the development of the 
external set point which uncouples the three inputs. 

Finally, the physical control design of the 
uncoupled and linearized system is carried out. 

4.1. Variables to be controlled 

Let us consider the definite nonlinear model by the 
state representation (E) which can be put in the 
general form of the nonlinear affine control system: 

(E) :  
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These parameters characterize the system: it is 
multivariable, strongly coupled, nonlinear and time-
varying. The variables to be controlled are: 
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4.2. Linearizing Control of the WWS and 
decoupling problem  

We know that the nonlinear system is affine 
control. We try to determine the control law: 

vxxxu )()()( βα +=  so that each output yi will be 
influenced by only one input vi. For that, a 
successive derivative Lie is calculated  
(k=0, …, k

)(xhLL i
k
fg

i) such as : . 0)( ≠xhLL i
k
fg
i

The linearization condition making it possible to 
check if a nonlinear system admits a linearization 
input-output is the relative degree order (r) of the 
system (Von Raumer, et al., 1994; Belabbes, et al., 
2001). For the output system, we have: 
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The control appears in the first derivation of y2, 
whereas for y1 and y3 just after the 2nd derivation, 
which gives: 
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The total relative degree of the output is 
(r=r1+r2+r3=5); thus the system is completely 
observable, and consequently it is exactly 
linearisable by diffeomorphism and nonlinear state 
feedback.  

According to the derivative Lie (24), we obtain the 
following form: 
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The matrix )(x∆ is called the decoupling matrix. So 
that the state feedback can exist, it is necessary that 
this matrix should be nonsingular (invertible) 
(Carlos Canudas de Wit, 2000). 

=∆ ))(det( x .0.. 852 ≠ψψψ  

To linearize the system, we applie the nonlinear 
state feedback following (Isidori, 1989; Chibani, 
2005): 
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and: v is an external set point what leads to three 
subsystems mono variable, uncoupled and linear. 
By replacing the expression (26) in that given into 
(25), we obtain a linear system completely 
uncoupled from the form: 

[ ] [ ]TT vvvyyy 321321 =&&&&&  

To be able to make the synthesis of linearizing 
control law, we must determine a variables change 
using a diffeomorphism made up of the variables 
resulting from successive derivations from the 
output y.  

Change of co-ordinates:  nzxz ℜ∈Φ= ;)(

thus:                       

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

==

==

=

==

3
2
3

53
1
3

42
1
2

1
2

1

31
1
1

yz

xyz
xyz

yz

xyz

&

&

After transformation and looping:  

⎩
⎨
⎧

=
+=

Czy
BvAzz&  

 

Such us:                 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−−==

=

−−==

−−==

=

)(

)(

)(

3333
2
3

2
3

1
3

2222
1
2

1111
2
1

2
1

1
1

c

c

c

zzkvz

zz
zzkvz

zzkvz
zz

&

&

&

&

&

111 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, 2007  ISSN 1221-454X  

 
5. RÉSULTS AND DISCUSSION 

The simulation results of the WWS control by the 
nonlinear control of the type linearization input-
output by nonlinear state feedback are illustrated by 
the figures below. Figure 4 illustrates well the 
response of the D. C motor velocity through the 
work rolls, similar to that of a 1st order system 
without overshoot, with a response time of 0.05 
seconds. We observe the perfect follow-up of the 
reference velocity (20m/s). Figure 5 present the 
strip tension (traction forces) of the work rolls 
upstream and downstream too. With starting, the 
upstream tension manifests a low oscillation which 
is cancelled quickly. However, the downstream 
tension shows a very good follow-up of the 
reference trajectory. The two tensions are stabilized 
at a response time of 0.05 seconds. 

 
Fig.3. Velocity  through the work rolls. 

 

 

 
Fig.4. Upstream Strip Tension. 

 

 

 

 
Fig.5. Downstream  Strip Tension. 

6. CONCLUSION 

The nonlinear control of the type linearization 
input-output by nonlinear state feedback is an 
application of the differential geometry which is 
based on the derivative Lie of the output control, 
and then an adequate choice state-feedback control 
cancels the nonlinearity and allows a very good 
follow-up of the references trajectories. For our 
case, the nonlinear control is affected directly by 
the torques, which requires the development of an 
estimator to evaluate the disturbances and to make 
the robust control. 
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