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Abstract: The goal of this paper is to determine analytical expression for the spectral 
density function of a signal, affected by a known frequency transformation, which do 
not modify the process energy. Such transformations of frequency variable can 
frequently appear on spectral density function of a signal, due to physical events (e.g. 
Doppler effect) or mathematical considerations (e.g. changing the coordinate system). 
In this case, all components of the spectral density function are modified. The formulas 
are valid for every spectral component and can be used in signal processing, for model 
simulation or implementation of advanced algorithm. A case study is illustrated on 
wave spectrum correction. 
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1. INTRODUCTION 

 
Many applications, in fields like radar, sonar, marine 
systems, biomedical engineering, are based on signal 
detection with unknown parameters, such as phase 
and frequency. Frequently, known transformations of 
frequency variable can appear on spectral density 
function of a signal, without changing the process 
energy, due to physical events (e.g. Doppler effect) 
or mathematical considerations (e.g. changing the 
coordinate system). In this case, all components of 
the spectral density function are modified.  
For example, in pulsed Doppler radar systems, the 
frequency of the back scattered pulse is not the same 
as the one of the transmitted pulse. In this case, only 
one spectral component is useful and the frequency 
transformation is linear (Lyman, 2003). Without 
knowing Doppler frequency, it is difficult to carry 
out target detection, prior to frequency estimation. If 
the dominant type of interference is clutter that is 
correlated and not necessarily Gaussian, the detection 
problem becomes even more difficult (Ong and 

Zoubir, 2003). For non-Gaussian interference, the 
clutter models include Weibull, K, Rayleigh mixture 
(Sangston and Gerlach, 1999). 
Another example of frequency transformation is the 
relative frequency between the wave and the ship, 
which represents the wave’s frequency in the 
coordinate system with the origin on the ship’s center 
of gravity. The relative frequency between the wave 
and the ship modifies the wave spectrum and this 
transformation must be taken into account for wave 
model generation (Nicolau, 2004). This is a more 
complex frequency transformation than Doppler 
effect, because the wave propagation is done, not into 
a specific environment, but at the separation surface 
between two different environments.  
The wave, which is regarded as an ergodic random 
process with elevation ζ(t) and zero mean, has for 
every spectral component a forward speed, which is 
not constant and depends on the component 
frequency. As a result, the frequency transformation 
is not linear, and in many cases it is not even global 
bijection (Nicolau and Ceanga, 2001). 
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The goal of this paper is to determine analytical 
expression for the spectral density function of a 
signal, affected by known frequency transformation, 
which do not modify the process energy. The 
formulas are valid for every spectral component and 
can be used in signal processing, for model 
simulation or implementation of advanced algorithm.  
The paper is structured as follows. In section 2, 
preliminaries and mathematical models are 
discussed. Analytical corrections of spectral density 
function at frequency transformation are determined 
in section 3. Section 4 presents a case study, referring 
to regular waves, which are the main disturbances for 
surface vessels. Simulation results are pointed out in 
section 5, and conclusions are presented in section 6.  
 
 

2. PRELIMINARIES AND MATHEMATICAL 
MODELS 

 
The power spectral density function Sxx(ω) of an 
ergodic random process with finite energy x(t) is a 
measure of the process energy. Considering xk(t) a 
representative instance of the ergodic process x(t) 
into finite time interval T, as shown in Fig. 1, the 
expression of the spectral density function can be 
determined. The energy of xk(t) instance is: 
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where Xk(ω) is Fourier transform of x k(t). 
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Fig. 1.  Instance xk(t) of the ergodic process x(t) 

 
The average power on time interval T is: 
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From (2), the average power of xk(t) results: 
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By definition, the average power of an ergodic 
random process is the temporal mean square value of 
process’s representative instance xk(t), and it depends 
on power spectral density function Sxx(ω): 
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Identifying the terms in (3) and (4), it results: 
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Knowing that the power spectral density is even and 
real function, Sxx(ω) = Sxx(-ω), the average power of 
the ergodic random process can be written: 
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where φxx(ω) is the mean square spectral density 
function of the representative instance of ergodic 
process, shortly called spectral density function, 
which is used in this paper. If the process energy is 
finite, then the average power is also finite and the 
integrals in (1) and (6) are bounded. 
 
 

3. CORRECTION OF SPECTRAL  
DENSITY FUNCTION 

 
Consider a process of finite energy, such as a signal, 
and let f(ω) be its spectral density function, f:X→[0, 
∞), X=[0,∞). Due to finite process energy, it results: 
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Let g function be a known transformation of 
frequency variable, g:X→Y, Y=[0, ∞), y=g(ω). The y 
and ω variables are called corrected frequency and 
initial frequency, respectively (Nicolau and Ceanga, 
2001). Due to this transformation, the spectral 
density function f(ω) in (7) is transformed into 
another unknown function h(y), h : Y → [0, ∞), 
which is called in this paper the corrected spectral 
density function, so that the energy and average 
power of the process to remain unchanged: 
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The shape of the corrected-spectral-density function 
h and the corrected frequency range corresponding to 
non-zero spectral components depend on frequency 
transformation. The goal is to obtain the analytical 
expression of h function. Suppose the g function is 
more general, being not global but local bijection, 
with n distinct zones, as shown in Fig. 2.  
It can be observed that specific values of corrected 
frequency (y) can be obtained by g transformation 
from different initial frequency components (ω). In 
this case, the component of corrected spectral density 
function is generated by several components of initial 
spectral density function. The g function is defined: 

,:
11
UU
n

i
i

n

i
i YXg

==

→   ,   (9) 
⎪
⎩

⎪
⎨

⎧

∈
−−−−−
∈

=

nn Xg

Xg
g

ωω

ωω
ω

)(

)(
)(

11

where gi : Xi  → Yi are bijections, i = 1…n. 
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Fig. 2.  Frequency transformation g(ω) 

 
The subsets Xi represent a covering for the function 
domain X, and they are distinct, except eventually for 
their extremities. The subsets Yi represent a covering 
for the codomain Y, not necessary to be distinct: 
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For every bijection gi , the inverse function exists: 
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It can be observed that: 
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On local extreme points of g function, it results: 
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Using (10), the first integral in (8) results: 
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Changing the variable, ω = g –1 (y), (15) becomes: 
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where the absolute value is considered, taking into 
account the integration sense. 
Let it be a new covering for codomain, with smaller 
distinct subsets Dj , j = 1…m, as shown in Fig. 2: 
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Subsets Dj are small enough to be included into Yi:  
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As a result, every subset Yi can be written using 
different subsets Dj. To extend the number of subsets 
included in every subset Yi to m, new theoretical 
subsets Aji can be used: 
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Using (20) in (16), the integration domain defined by 
subsets Yi is replaced with a new domain, which 
includes subsets Dj, resulting: 
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The integration domain can be specified with subsets 
Dj, using additional coefficients: 
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Using (22) in (21), the integral in (8) results: 
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Reordering the terms, the first integral becomes: 
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On the other hand, the second integral in (8) is: 
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In (8), the equality of the integrals must be true for 
every corrected-frequency value y. This implies in 
(24) and (25), the equality of the integrals for every 
subset Dj and also the equality of the functions under 
integrals. Identifying terms in (24) and (25), results: 
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In (27) it can be observed that, for every corrected-
frequency value y, the corrected spectral component 
hj(y) is a sum of maximum n components from initial 
spectral density function, which are modified based 
on frequency transformation. Also, for every local 
extreme of g function, which are extremities of 
subsets Dj , h function becomes discontinuous and 
unbounded, but the integral remains bounded. 
Considering only a part of the process energy, 
corresponding to spectral components generated by 
frequencies in the specified range [ω1, ω2], it results: 
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where y1=g(ω1) and y2=g(ω2).  
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4. CASE STUDY 

 
4.1.  Relative Frequency of a Wave 
 
The waves in open sea, which are main disturbances 
for surface vessels, can be regarded as an ergodic 
random process with elevation ζ(t) and zero mean. 
For knowing the statistical parameters of the wave 
and generating the wave model, the mean square 
spectral density function φζζ(ω) of the wave elevation 
ζ(t), shortly called wave spectrum, must be known.  
The relative frequency of a wave (ωr) represents the 
wave’s frequency in the coordinate system with the 
origin on the ship’s center of gravity. It depends on 
the speed of the ship (v) and the incidence angle (γ), 
which is the angle between the heading and the 
direction of the wave, as illustrated in Fig. 3. 

 
Fig. 3.  Incidence angle γ  modifies the relative speed 

between the wave and the ship 
 
The relative frequency between the wave and the 
ship modifies the wave spectrum and this 
transformation must be taken into account for wave 
model generation.  
If the ship’s speed v is non-zero then the component 
on the wave direction v1 is non-zero, which modifies 
the relative speed vr and the relative frequency of the 
wave ωr. The relative frequency of the wave ωr is 
given by the following formula : 
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Equation (28) can be written with one parameter: 
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where the parameter a has the expression: 
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The sign of the relative frequency shows the 
direction that the wave hit the ship and it is not 
important in studying the influence of the wave over 
the ship (Nicolau, 2004). Hence, absolute value can 
be taken in (29), resulting: 
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The range of values for the parameter a∈[amin, amax] 
depends on the maximum value of ship speed vmax: 
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For waves in open sea, (31) is true for every 
component of the wave spectrum. 

 
Fig. 4.  Variation of relative frequency with a<0 

 
If a=0 the frequency remains unchanged ωr=ω, as 
illustrated with dotted line in Fig. 4. 
If a<0 the expression of relative frequency in (31) is: 

( ) ωωωω >⋅−⋅= ar 1 ,  (33) 
and the function is a global bijection. The relative 
frequency variation with parameter a<0 is shown in 
Fig. 4, for three negative values: -0.05, -0.3, -1.2. 
If a>0 the expression of relative frequency is: 
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The function is not a global but local bijection, as 
shown in Fig. 5, which represents the variation of 
relative frequency with a>0 for three positive values: 
0.05, 0.3 and 1.2.. 

 
Fig. 5.  Variation of relative frequency with a>0 

 
There are frequencies below and above the dotted 
line, which means that for some ωr≤ω and for the 
other ωr >ω. The speed of wave components with 
ω<1/a is greater than the ship’s speed and those with 
ω>1/a have speed smaller than the speed of the ship. 

 
Fig. 6.  The subsets of domain and codomain of ωr
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The relative frequency with a>0 is a continuous 
function with three local bijections, shown in Fig. 6: 
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The relative frequency with a>0 and all the subsets 
defined in previous section are illustrated. 
 
4.2.  Wave Spectrum Correction 
 
To analytically describe a wave spectrum, there are 
defined several similar formulas for fully developed 
waves (Price and Bishop, 1974), of the form:  
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The parameters A and B have different forms, as 
function of the wind speed or the significant wave 
height h1/3 and the average period. For example, 
ITTC spectrum has (Pierson and Moskowitz, 1964): 

A = 0.7795,          (37) 2
3/1/113 h.B =

All spectral components of the wave are modified by 
ωr and form a new corrected spectrum, whose 
expression can be obtained based on energy equality: 
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The m0 moment represents the mean square value of 
wave elevation ζ(t), being a wave characteristic: 
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Also m0 represents the mean value of the power for 
the wave concerned. Hence, the energy on the wave 
surface unity (Ev) will be proportional with m0. 
Values of a from (30) affect the expression and shape 
of the corrected spectrum.  
If a=0 the wave spectrum remains unchanged φζζ r 

(ωr)=φζζ(ω). If a<0 then h(y) has a single expression 
and the corrected wave spectrum is: 
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This is the most used case in simulations, as the ship 
and the wave have opposite movements. The 
spectrum is illustrated in Fig. 7, being bounded for 
any value of a. While a values moves to negative 
values, the spectrum moves to high frequencies.  
If a>0, the expression of the corrected spectrum is: 
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Fig. 7.  Transformation of the wave spectrum for a<0 
 
The expressions of φ ζζ ri (ωr) are: 
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The shape of the corrected spectrum φζζr(ωr) is 
changing with a, depending where the two particular 
frequencies ω =1/(2a) and ω =1/a are placed, inside 
or outside of the range [ω1, ω2] of the initial 
spectrum. Four situations are possible, with bounded 
and unbounded corrected spectra. The two situations 
with unbounded spectra are represented in Fig. 8. 

 
Fig. 8.  Transformation of the wave spectrum for 

a∈[1/(2ω2), 1/ω1] 
 

If 1/(2a )≤ ω2 < 1/a <=> a∈[1/(2ω2), 1/ω2), then the 
corrected spectrum becomes discontinuous and 
unbounded for relative frequency ωr=1/(4a), being 
illustrated with continuous line in Fig. 8. The 
corrected spectrum has a predominant spectral 
component at frequency ωr=1/(4a). 
If ω1 ≤ 1/a ≤ω2 <=> a∈[1/ω2, 1/ω1], in addition to 
the discontinuous point for ωr=1/(4a), the spectral 
component for ωr=0 is not zero (dotted line), which 
corresponds to the situation when the ship is siting on 
and moving with the wave. 
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5. SIMULATION RESULTS 

 
For simulations, ITTC wave spectra and a ship with 
vmax=12 m/s are considered. The limits of parameter 
a, computed with (32), are: a min= - 1.3, a max=1.3. 
If a<0 then a can take any negative value in the 
range [-1.3, 0] and the corrected wave spectrum with 
the analytical expression in (40) remains bounded. 
The wave spectrum with significant height h1/3=5 m 
(dotted line), and the corrected wave spectra for three 
values of a: -0.2, -0.6 and –1.3 are shown in Fig. 9. 

 
Fig. 9.  Wave spectrum correction for h1/3 = 5 m 

 
In general, the wave model takes into account only a 
limited frequency band, which contents the spectral 
components with the most part of the wave energy.  
For example, if 0<a<1/(2ω2) the initial wave 
spectrum is placed to the left of ω=1/(2a), as shown 
in Fig. 10.  

 
Fig. 10.  Initial wave spectrum for a < 1/(2ω2) 

 
The frequency ω2 is chosen so that the most part of 
the wave energy to be contained in the wave 
components generated by the frequencies ω ≤ ω2: 
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where the second integral is equal to the zero 
moment of the wave spectrum, m0=A/(4⋅B), and 
represents the mean value of the wave power on the 
surface unity. In this case, the limits of parameter a 
become: 0<a<a2. The a2 and ω2 values are computed 
in (Nicolau and Ceanga, 2001), based on weight 
(0<p<1) chosen to approximate the wave energy: 
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For h1/3 =1m, the a2 variations with p are shown in 
Table I. Selecting the zone p=0.95, the ranges for a 
will be (0, 0.18). The limit ω2 for p=0.95 is ω2 =2.79. 

Table I. Variations of a1 and a2 with p 

p 0.99 0.95 0.9 0.85 0.8 
a2 0.12 0.18 0.21 0.24 0.26 

 
In Fig. 11 are illustrated the initial wave spectrum 
(dotted line) and the corrected wave spectra for two 
values of a < 0.18: 0.08 and 0.14. From (31), the 
limits ω2r with a indicated above are: 2.17 and 1.7. 

 
Fig. 11.  Corrected wave spectra for a∈(0, 0.18) 

 
 

6. CONCLUSIONS 
 
The analytical expressions for the spectral density 
function of a signal, affected by a known frequency 
transformation, which do not modify the process 
energy, are determined. The formulas are valid for 
every spectral component. Every corrected spectral 
component hj(y) is a sum of maximum n components 
from initial spectral density function, which are 
modified based on frequency transformation. 
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