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Abstract: The aim of this paper is to  indicate the equations of  electromagnetic wave in 
homogenous and non-homogenous dielectric material, estabilising the bundary 
conditions and solves by FEM the equations of the electromagnetic wave in the 
rectangular cavity. By numeric simulation of the  waveguide  in the cavity there have 
been studied the modifications of both the ways of propagation and the field’s 
distribution. The non-homogenous mediums afectes the field’s amplitude, obtaining a 
non-homogenous distribution. Poyting vector of the wave’s transmision , indicates the 
energetic flux’s concentration in the air besides the dielectric material 
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1. INTRODUCTION 

The conductors and the dielectric system modes 
which determine the propagation of electromagnetic 
waves on the length of the trail are called 
waveguides. These types of waveguides are also 
called modes. They can be electrically and 
magnetically transversal (TEM), electrically 
transversal (TE) or magnetically transversal (TM). 
The horizontal wave is an electrically and 
magnetically transversal mode (TEM) in which the 
intensities of the electric and magnetic fields are 
situated in normal plans on the direction of the 
propagation. In this case the wave vector is collinear 
with the direction of movement of the wave and is 
perpendicular on the size of the electromagnetic field 

0=⋅ Ek or 0=⋅Hk
r

 indicating the rotation of the 
field’s size. If the plan of rotation of these sizes does 
not coincide with the transversal plan on the direction 
of propagation you obtain the TE and TM modes. In 
this situation there can have an electric component 
only in the transversal plan (TE mode) or only the 
magnetic component in the transversal plan (TM 
mode)[1]. These last modes exist only if the 
dielectric medium is homogenous. In the case of non-
homogenous modes purely TE or TM this situation 
does not exist. This situation occurs in many 
microwave applications such as the dielectric dry. In 

these applications what is interesting is the way of 
solving a wave equation. 

2. THE MATHEMATICAL MODEL OF THE 
WAVE EQUATION 

 
The wave equations result from Maxwell’s 
equations[3]. In mediums in which ρv = 0, J = 0 there 
can exist only movement currents; Maxwell’s 
equations are:  
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(1)  

Supposing that the propagation of waves in a 
rectangular cannel un which the guide is uniform in 
transversal section (xy) and invariable after the z axis 
of the propagation. In this hypothesis the sizes of the 
field from the interior of the guide can be represented 
as sinusoidal sizes in time and space under the form 
of:  
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in which the real values of  γ indicate the untenanted 
propagation on the way of z axis of the mode with 
the wavelength γπλ /2=  

The form in a complex plan of Maxwell’s equations 
[2] is: 

0)H(EjHx

0)E(HjEx

=µ∇ωε=∇

=ε∇ωµ−=∇
rrr

rrr

(3) 

Dividing the first equation to µ and the second to ε 
and applying the curl operator there can be 
determined the wave equation:  
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a. The homogenous waveguide 

In this case the guide put under analysis consists of a 
metal cavity in the interior of which there is a 
homogenous and isotropic dielectric. The analysis of 
the way of propagation of the wave can be simplified 
by decomposing the sizes of the fields in the sum of 
two components E=ET+Ezez, a longitudinal one Ez 
(on the axis of the wave’s propagation) and a 
transversal one  ET ( part of the transversal plan on 
the direction of the wave), respectively H=HT+Hzez . 
If the nabla operator [5] is under the form of  
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plan. 

Replacing relation (6) in the field of equations (4) 
there are obtained the bidimensinal equations of the 
waves for any component of the field: 

(7) 
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The bidimensional equation of the waves attached to 
the transversal plan can be solved only for the 

component on the direction of movement Ez 
respectively Hz. The electromagnetic field’s 
distribution, on perpendicular plan regarding the 
direction of movement of the wave gives information 
referring to the ways of propagation. The propagation 
constant  for which the existing 
solutions constitute it’s own values of the way of 
propagation supported by the waveguide. For any of 
it’s own value there is an undetermined number of 
combinations for ω,µ,ε,γ  which rouses this way.  

)( 222 γµεω −=k

The dependencies between the transversal and 
longitudinal components of the field is determined 
from the first rank dual equations of the 
electromagnetic fields by replacing relation (5) in 
equations (3) and separating the components and 
obtaining: 
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In dielectric homogenous mediums there are two 
different sets of propagation modes. The first one is 
determined by the TM mode in which the magnetic 
field does not have any component on the direction 
of propagation Hz=0. The second one, the TE mode 
in which the Ez=o component is null. In these 
situations the equations (8) are simplified by 
imposing Hz=o or Ez=0. In the TE mode the 
bidimensional equation is solved  

(9) 0)( 22 =−+∆ zzT HH
rr

γµεω   

with the conditions on the boarder of the conductor 
walls 0=Hn

rr
 or 0)( =+ zzT eHHn

rrr  implying 

0=THn
rr  because 0=zen

rr
. Because the transversal 

components do not interfere in the solution of the 
equation by the combination of relations (8) 
particularly in TE mode  
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with 0)( =+ yyxx eHeHn
rrr  there can be determined 

the natural condition on the boarder depending on Hz  
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In TM mode the bidimensional equation  

(11) 0)( 22 =−+∆ zzT EE
rr

γµεω   

is solved with the conditions on the boarder of the 
conductor walls . Because 0=Exn

rr

0)( =+ zzT eEExn
rrr  conducts to zzT EexnExn )(

rrrr
=  

which can be solved only if the Ez component is 
canceled on the field’s frontier, the condition being 
of Dirichlet type    

(12) Ez = 0  

b. The non-homogenous guide 

Regarding the non-homogenous guides there can be 
simultaneously the TE and TM mode. The solution to 
the problem of propagation can come by solving the 
equations system (4) for E and H wave in which the 
gradient of permittivity interferes and also the 
overlapping of solutions. In this case there can appear 
false ways of propagation as the condition divB=0 
doesn’t explicitly appear. Another alternative to 
finishing the problem consists of solving the wave 
equation for transversal components. The first rank 
dual equations of the magnetic field in complex 

HjEx
rr

ωµ−=∇ , EjHx
rr

ωε=∇   by replacing the 
nabla operator(5) and the components of the electric 
and magnetic field become: 
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The equation system can be separated and becomes 
this way: 

• The equation of the longitudinal 
components of the wave: 

(14) 
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• The equation of the transversal components 
of the wave: 
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Analyzing the equation of longitudinal components 
of E type and applying the nabla operator  
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In which from the equation of transversal 
components (15) the right member is replaced 
resulting  

(17) )()( 2
TzT

TT
T ExeH

Hx
x

rrr
r

γωµω
ε

−=
∇

∇  

The form term )( Tz Exe
rr

γω  can be determined from 
the second relation of the system (15) after the cross 
with jγez and the double division of the cross product 

obtaining 
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replaced in (17) conducts to  
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From the conservation condition of the magnetic 
field 

(19) 0))(( =+−∇ zzTzT eHHej
rrr

γ   
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 that replaced 
in (18) conducts to the bidimensional equation of the 
non-homogenous waves  
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If the medium is homogenous  ε  and is constant and 
the equation (20) is reduced to equation (7). Similarly 
there can be obtained the wave equation for the 
transversal components of the intensity of the electric 
field. The bundary  condition can be determined from 

(21) 0=Hn
rr

 and . 0=Exn
rr

3. THE NUMERIC SIMULATION OF THE 
FIELD’S DISTRIBUTION IN THE WAVEGUIDE 

It is considered a rectangular cavity with the 
dimensions 2x4 cm2 which contains two dielectric 
mediums with different permittivity εr1=1 and εr2=3,5 
(celluloses) according to the figure through which the 
electromagnetic wave is being propagated if the 
dielectric material invades the whole cavity when 
there is a non-homogenous guide. In various 
applications the dielectric material does not occupy 
the whole cavity but only an area (central) being 
surrounded by the dielectric air medium. We propose 
to solve in the two situations the wave’s equation for 
the frequency of the microwave applier 2,45 GHz, 
determining the influence of the non-homogenous 
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medium in it’s propagation. The numeric simulation 
of the wave’s propagation in the cavity is being done 
with the finished element method and with the help 
of PDEase program [4] by simplifying the cross 
product (20) into two scalar equations corresponding 
to the Hx, Hy components under the form 
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Completed with the necessary conditions on the 
boarder  which implies 0=Hn

rr
0)( =+ zzT eHHn

rrr  

or 0=THn
rr  because 0=zenrr .Condition 0=THn

rr  

expressed under the 0)( =+ jHiHn yx
rrr

 form on the 
horizontal walls is accomplished if Hy=0 and 
because 0=iny

rr
 Hx component is expressed through 

natural (Hx) =0. On the vertical walls the same 
condition implies Hx=0 respectively natural (Hy) =0. 
The interference conditions between the dielectric 
materials are those of conservation of fluxes     

The results of the numeric simulation module 1 for 
the two situations are 
 

 
a. homogenous guide 

 
b. non-homogenous guide 

Fig.1. The Hx component distribution 

 
a. homogenous guide 

 

 
b. non-homogenous guide   

Fig.2. Hx surface 
 

 
a. homogenous guide 

 
b. non-homogenous guide 
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Fig.3. Hy component distribution   

   

 
a. homogenous guide 

                                        

 
b. non-homogenous guide 

Fig.4.  Hy surface 
 
The transversal components of the electric field are 
determinated from the combonation of equation (15) 
and (19) obtaining  
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The distribution of these components for the non-
homogenous guide is given in the graphic 
 

 
The Ex component distribution  

 

 
Fig.5. The Ey component distribution  

 

 
Fig.6. The Ex component surface 

 
 

         

 
Fig.6. The Ey component surface  
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Poyting vector of the wave’s transmision, indicate 
the energetic flux’s concentration in the air besides 
the dielectric material. This distribution is show in 
figure 7.  

4. CONCLUSION 
 

The bidimensional equation of the non-homogenous 
waves (20) generalizate the equation of homogenous 
waves and completed with the necessary conditions 
on the boundary 0)( =+ jHiHn yx

rrr
 we can 

determinated the distribution  of the field in the 
cavity. These graphics point out the modification of 
both the ways of propagation and the field’s 
distribution. In non-homogenous mediums it is 
obtained a non-homogenous distribution of the 
field’s amplitude.     
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