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Abstract: The aim of this paper is to indicate the equations of electromagnetic wave in
homogenous and non-homogenous dielectric material, estabilising the bundary
conditions and solves by FEM the equations of the electromagnetic wave in the
rectangular cavity. By numeric simulation of the waveguide in the cavity there have
been studied the modifications of both the ways of propagation and the field’s
distribution. The non-homogenous mediums afectes the field’s amplitude, obtaining a
non-homogenous distribution. Poyting vector of the wave’s transmision , indicates the

energetic flux’s concentration in the air besides the dielectric material
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1. INTRODUCTION

The conductors and the dielectric system modes
which determine the propagation of electromagnetic
waves on the length of the trail are called
waveguides. These types of waveguides are also
called modes. They can be electrically and
magnetically  transversal (TEM), electrically
transversal (TE) or magnetically transversal (TM).
The horizontal wave is an electrically and
magnetically transversal mode (TEM) in which the
intensities of the electric and magnetic fields are
situated in normal plans on the direction of the
propagation. In this case the wave vector is collinear
with the direction of movement of the wave and is
perpendicular on the size of the electromagnetic field
k-E=00r k-H =0 indicating the rotation of the
field’s size. If the plan of rotation of these sizes does
not coincide with the transversal plan on the direction
of propagation you obtain the TE and TM modes. In
this situation there can have an electric component
only in the transversal plan (TE mode) or only the
magnetic component in the transversal plan (TM
mode)[1]. These last modes exist only if the
dielectric medium is homogenous. In the case of non-
homogenous modes purely TE or TM this situation
does not exist. This situation occurs in many
microwave applications such as the dielectric dry. In
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these applications what is interesting is the way of
solving a wave equation.

2. THE MATHEMATICAL MODEL OF THE
WAVE EQUATION

The wave equations result from Maxwell’s
equations[3]. In mediums in which p, =0, J =0 there
can exist only movement currents; Maxwell’s
equations are:

0B

rotE = ——:rotH :@;divﬁzo;divézo(l)
ot ot

Supposing that the propagation of waves in a
rectangular cannel un which the guide is uniform in
transversal section (xy) and invariable after the z axis
of the propagation. In this hypothesis the sizes of the
field from the interior of the guide can be represented
as sinusoidal sizes in time and space under the form
of:

2 E(x,y,z,t) = E(x, y)eit
H(X,y,Z,t) = F'(X, y)ej(mtfyz)
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in which the real values of y indicate the untenanted
propagation on the way of z axis of the mode with
the wavelength 1 =2x/y

The form in a complex plan of Maxwell’s equations
[2] is:

V(cE)=0
V(uH) =0

VXE =—jopH
VxH = jocE

Dividing the first equation to u and the second to ¢
and applying the curl operator there can be
determined the wave equation:

(V—XE) w’eE
" (4)

a. The homogenous waveguide

In this case the guide put under analysis consists of a
metal cavity in the interior of which there is a
homogenous and isotropic dielectric. The analysis of
the way of propagation of the wave can be simplified
by decomposing the sizes of the fields in the sum of
two components E=Et+E,€,, a longitudinal one Ez
(on the axis of the wave’s propagation) and a
transversal one Er ( part of the transversal plan on
the direction of the wave), respectively H=H++H.e, .
If the nabla operator [5] is under the form of

o. 0. - L
(5) V=~ & Ty IR Vi — i,
Kl 82 )
Notedas — jy =— =y then —=-
jr= el =7 2 4
and
0?02
(G)AZaX—Z-‘ray—z—}/z:AT —}/2

a 0 .
Where V; = x T —€, operator in a transversal
6x oy Y

plan.

Replacing relation (6) in the field of equations (4)
there are obtained the bidimensinal equations of the
waves for any component of the field:

(7) ArE +(0’ne-y*)E=0
ArH+(0’ue-y*)H=0

The bidimensional equation of the waves attached to
the transversal plan can be solved only for the
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component on the direction of movement Ez
respectively Hz. The electromagnetic field’s
distribution, on perpendicular plan regarding the
direction of movement of the wave gives information
referring to the ways of propagation. The propagation

constant k? = (w?us —y?) for which the existing

solutions constitute it’s own values of the way of
propagation supported by the waveguide. For any of
it’s own value there is an undetermined number of
combinations for w,u,e,y which rouses this way.

The dependencies between the transversal and
longitudinal components of the field is determined
from the first rank dual equations of the
electromagnetic fields by replacing relation (5) in
equations (3) and separating the components and
obtaining:

(0’ us—y*)E, = ayz + %)
©) (0% =7, = (o2 —y%)
(0’ ue—y*)Hy = aaEyZ —7?—;)
(@’ pe—y*)H, = : +y%)

In dielectric homogenous mediums there are two
different sets of propagation modes. The first one is
determined by the TM mode in which the magnetic
field does not have any component on the direction
of propagation Hz=0. The second one, the TE mode
in which the Ez=o0 component is null. In these
situations the equations (8) are simplified by
imposing Hz=0 or Ez=0. In the TE mode the
bidimensional equation is solved

9) ArH, +(0*us—y*)H, =

with the conditions on the boarder of the conductor
walls fiH=0 or fi(H; +H,8,)=0 implying
fiH; =0 because i€, =0. Because the transversal

components do not interfere in the solution of the
equation by the combination of relations (8)
particularly in TE mode

(@*ue—y*)H, = aaHz
X
O o

with f(H €, +H € ) =0 there can be determined

the natural condition on the boarder depending on Hz
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aaHyZ §,)=fi(VrH,) =0

(10) ﬁ(aaHXZ 6, +

In TM mode the bidimensional equation
(11) ATE, +(0’us-y*)E, =0

is solved with the conditions on the boarder of the
conductor walls AXE = 0. Because
fix(E; + E,&,)=0 conducts to RAxE; = (AxE,)E,
which can be solved only if the Ez component is

canceled on the field’s frontier, the condition being
of Dirichlet type

(12)Ez=0
b. The non-homogenous guide

Regarding the non-homogenous guides there can be
simultaneously the TE and TM mode. The solution to
the problem of propagation can come by solving the
equations system (4) for E and H wave in which the
gradient of permittivity interferes and also the
overlapping of solutions. In this case there can appear
false ways of propagation as the condition divB=0
doesn’t explicitly appear. Another alternative to
finishing the problem consists of solving the wave
equation for transversal components. The first rank
dual equations of the magnetic field in complex

VXE = —jouH , Vxﬂzja)gE by replacing the

nabla operator(5) and the components of the electric
and magnetic field become:

(13)
(V= 18, )x(E; +€,E,) = —jou(H, +&,H,)

(ﬁT - Jyéz)X(FIT +éZHz) = j(’OSc(ET +ézEz)

The equation system can be separated and becomes
this way:
the

e The equation of

components of the wave:

longitudinal

VTXET = _j(DH'Hz_éz
(14) .

VxH; = joeE, ¢,

e The equation of the transversal components

of the wave:

ﬁTXézEz - jyézXET = _jo‘)MBT
(15) _ _ _
V:Xxe,H, - jyé,xH; = joeE,
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Analyzing the equation of longitudinal components
of E type and applying the nabla operator

VixH;

(16) Vi x( ) =—Jo(V XE,&;)

In which from the equation of transversal
components (15) the right member is replaced
resulting

V.xH - -
(17) Vex(——=1) = o* uH 1 - yo(€xEr)

The form term yw(€,xE;) can be determined from

the second relation of the system (15) after the cross
with jye, and the double division of the cross product

jWTﬂz +72ﬂT
& &

obtaining wy(€,XE;) =- that

replaced in (17) conducts to

_72ﬂT
£

Vo xH - jV:H
(18) VxR - 2 AT
& g

From the conservation condition of the magnetic
field

(19) (Vy - i78,)(Hy +H,&,) =0

there can be deducted V;H; = jyH, that replaced

in (18) conducts to the bidimensional equation of the
non-homogenous waves

VixH )= a)z,uH
= inky

&

+VT(VTﬂT) _72ﬂT
& &£

(20) V1 x(

If the medium is homogenous ¢ and is constant and
the equation (20) is reduced to equation (7). Similarly
there can be obtained the wave equation for the
transversal components of the intensity of the electric
field. The bundary condition can be determined from

(21) fiH =0 and AxE =0.

3. THE NUMERIC SIMULATION OF THE
FIELD’S DISTRIBUTION IN THE WAVEGUIDE

It is considered a rectangular cavity with the
dimensions 2x4 cm? which contains two dielectric
mediums with different permittivity €,=1 and ,=3,5
(celluloses) according to the figure through which the
electromagnetic wave is being propagated if the
dielectric material invades the whole cavity when
there is a non-homogenous guide. In various
applications the dielectric material does not occupy
the whole cavity but only an area (central) being
surrounded by the dielectric air medium. We propose
to solve in the two situations the wave’s equation for
the frequency of the microwave applier 2,45 GHz,
determining the influence of the non-homogenous
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medium in it’s propagation. The numeric simulation Fig.1. The Hx component distribution
of the wave’s propagation in the cavity is being done
with the finished element method and with the help
of PDEase program [4] by simplifying the cross
product (20) into two scalar equations corresponding
to the Hx, Hy components under the form

Hx
(-003,-0.12, 300

[T
—
Do
B85

1.50
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Ay 2

0 @Hx PHy L 0 X oy o riHX g
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a. homogenous guide
Completed with the necessary conditions on the
boarder iH =0 which implies fi(H; +H,&,) =0

=F

03.-0.12,30.)

or fiH; =0 because fi€, =0.ConditionfiH; =0

[RREN
e
e
28

Do W 00 060 D i L e Y D 00 KO D R e Iy
SobpsdasssEonatEddads8abas88a

expressed under the fi(H,i +H,j)=0 form on the
horizontal walls is accomplished if Hy=0 and
because ﬁyf =0 Hx component is expressed through

natural (Hx) =0. On the vertical walls the same
condition implies Hx=0 respectively natural (Hy) =0.
The interference conditions between the dielectric
materials are those of conservation of fluxes

The results of the numeric simulation module 1 for

the two situations are b. non-homogenous guide

Fig.2. Hx surface
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Fig.3. Hy component distribution
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The transversal components of the electric field are
determinated from the combonation of equation (15)

and (19) obtaining
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Y
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Poyting vector of the wave’s transmision, indicate
the energetic flux’s concentration in the air besides
the dielectric material. This distribution is show in
figure 7.
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The Poyting distribution

Fig.7. The Poyting surface
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4. CONCLUSION

The bidimensional equation of the hon-homogenous
waves (20) generalizate the equation of homogenous
waves and completed with the necessary conditions

on the boundary fA(H,i+H,j)=0 we can

determinated the distribution of the field in the
cavity. These graphics point out the modification of
both the ways of propagation and the field’s
distribution. In non-homogenous mediums it is
obtained a non-homogenous distribution of the
field’s amplitude.
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