
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2023, VOL. 46, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

 ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
Article DOI: https://doi.org/10.35219/eeaci.2023.1.04

29

 DYNAMIC BACKTRACKING FOR ABSTRACT ARGUMENTATION
SYSTEMS

Sabina Costache

Computer Science Department, Dunarea de Jos University of Galati

Abstract: Abstract Argumentation Frameworks (AFs) are a major formalism for
practical reasoning, to be used in non-monotonical reasoning of intelligent agents. The
paper presents some of the latest researches in the field of efficient computation for
different semantics of abstract argumentation systems. An algorithm with backtracking
with look-ahead and different heuristics is taken as a basis, to be further developed and
to experiment new backtracking -based optimizations in the field of AF, and an
adaptation of dynamic backtracking for the same field is shaped for further experiments
and improvements.

Keywords: Argumentation frameworks, dynamic backtracking, practical reasoning,
Beliefs-Desires-Intentions systems, preferred extensions., non-monotonical reasoning.

1. INTRODUCTION

Abstract argumentation frameworks (AFs) (Dung,
1995) are a simple formalism, but very useful in
many contemporary problems, like modelling
disputes between two or more agents, (modelling
inference in practical reasoning, in general, when
more or one and the same agent have/has to choose
between competing goals and desires)
(Amgoud,2007).

Practical reasoning is an evolving domain which
aims to model the complex human-like way of
thinking in real world problems like law, diagnosis,
task planning and „reasoning toward action “ in
general. The whole BDI-s architectures (Beliefs/
Desires/ Intentions) use the practice and theory that
resides behind these frameworks (Amgoud, 2007).
Practical reasoning for BDIs governs what agents
should do and is mainly consisting of 2 major steps
(Amgoud, 2007): deliberation (i.e. identification of
goals) and choosing ways to achieve goals (which is,
essentially, a decision making task that implies
selecting among feasible sets of plans).

A major concern in practical reasoning is that a
complete formalization for it in the BDI literature is
still missing, and only informal patterns of inference

for simple examples are known (Amgoud,2007).

The formal meaning of an AF is given in terms of
argumentation semantics. Semantics define the sets
of arguments (extensions) that can be used to defend
a point of view in a dispute (Alfano, 2017). The
problem with most of the argumentation semantics
currently useds is that they suffer from a high
computational complexity (Dunne, 2009), but the
complexity evaluation done so far was mainly
focused on ‘static’ frameworks, whereas in practice
AFs are dynamic systems (Baumann, 2011).

Starting within the 2010’s, the interest in research for
the dynamics in AFs has constantly grown
(Baumann, 2021). The idea is, firstly, to dynamically
add or delete arguments and attacks (see Section 2),
as every dispute in the real world does, and in the
meantime, to discover or adapt algorithms to tackle
this problem.

An important contribution in using dynamics to
better prune the search space and speed up
computation of extensions- is the incremental
approach from (Alfano, 2017). The authors of
(Alfano, 2017) define an influenced set of an AF and
an extension under a given semantics as the set of
arguments that will be influenced by adding or

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2023, VOL. 46, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

deleting an attack a→ b (by following the chains of
attacks that start with argument b) and apply the
extensions’ computing algorithm only over the
reduced AF (that contains only the influenced
arguments). This application of the algorithm only
over the influenced set is called incremental, as it
avoids re-computing what remains the same when
new pieces of information arrive.

The adapted dynamic backtracking that we shall
present in Section 3 does intuitively the same thing
but with different tools, and maybe, if it will integrate
appropriate heuristics, it will do it in a more effective
way.

Section 2 introduces the formal background of
abstract argumentation and dynamic backtracking ,
and Section 3 presents a new approach: using
dynamic backtracking for dynamic abstract
argumentation frameworks.

The paper presents an adaptation of an existing
algorithm to suit Argumentation frameworks, starting
from the ideas of other works (Nofal, 2016) that have
integrated forms of backtracking to approach
inference in practical reasoning, which is a problem
of interest in many current applications.

2. FORMAL BACKGROUND

2.1. Argumentation frameworks

Definition (Dung, 1995). An abstract argumentation
framework (AF) is a pair (A, R), where A is a set of
abstract arguments (from a given Universe U), and R
is a binary attack relation R, subset of AxA, whose
elements are called attacks. (Thus, an AF is a
directed graph where nodes correspond to arguments
and edges correspond to attacks).

The following notations hold:
{x}- =the subset of arguments that attack argument x
{x}+ =the subset of arguments that are attacked by
argument x

The notations can be extended to sets of arguments:
 S+ ={b| exists a in S, a attacks b}= the set of all
arguments attacked by S
 S- ={b| exists a in S, b attacks a}= the set of all
arguments that attack S

Definition (Dung, 1995). A subset S of A is a defence
for a in A iff for any b in A such that b attacks a,
exists c in S such that c attacks b.

Definition (Dung, 1995). x in A is acceptable wrt S
iff S is a defence of x towards all its possible attacks.

Definition (Dung, 1995). S is conflict-free if for
each x,y in SxS, x doesn’t attack y (no inner attacks).

Definition (Dung, 1995). S is admissible iff S is
conflict -free and every x in S is acceptable with
respect to S (S is defending itself against all attacks).

Definition (Dung, 1995). An argumentation
semantics specifies criteria for identifying a set of
arguments that can be considered „reasonable“
together – these sets are called extensions.

Definition (Dung, 1995). A complete extension S is
an admissible set that contains all that it can defend.

Definition (Dung, 1995). A complete extension is
preferred if it is maximal w.r.t. to set inclusion.

Complete motivations for the argumentation’s
semantics can be found in (Caminada, 2009).

2.2. Backtracking for arguments

The idea to use backtracking for generating AF
extensions under different semantics is not a new
one. In (Nofal, 2016), the authors adapt the pruning
technique of looking ahead in backtracking to decide
acceptance under different semantics and to generate
extensions associated to those semantics. Their
algorithms and input data can be found here
http://sourceforge.net/projects/argtools.

For instance, the improved algorithm for the
preferred semantics builds a search-tree associated to
including / excluding arguments (label IN/ label
OUT) , labelling OUT all arguments attacked by an
IN argument. Also, arguments that attack a IN
argument are labelled MUST_OUT if there isn’t an
argument z IN that attacks them, and they become
OUT as soon as such a z occurs. If the labelling
becomes complete (all arguments being IN, OUT,
UNDEC or MUST_OUT), and there still are
arguments labelled MUST_OUT, then this partial
solution is abandoned as hopeless. UNDEC
symbolizes undecided- that is, the argument is neither
IN or OUT but we refrain from labelling it strongly
(possibly, because of lack of information, or it might
be self-attacking; thea meaning is that some
extensions contain it, some others are not). The
algorithm starts the labeling from the most influential
arguments, to shorten the depth of the backtrack
search (an useful idea that we shall also keep in our
adaptation).

Definition (Nofal, 2016). An argument x is called
influential if it has no value assigned and for any
other y unassigned too, we have |{x}±|≥|{y}±|.

The look-ahead functions from Algorithm 4 for
computing all preferred extensions (Nofal, 2016),
search for arguments labelled MUST-OUT and try to
find a predecessor of them (i.e. an attacker) that has
not been labelled yet (is BLANK). The MUST_OUT

30

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2023, VOL. 46, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

arguments are attackers of the IN arguments that
haven’t received a defender yet (there is nothing IN
attacking them). If there is no such a predecessor,
then that argument must be put on the list to be
changed its labelling.

Throughout the algorithm, references to special
predecessor are continuously maintained and
adapted, to ease the choosing of the next argument to
be assigned, such that the chances to end in a solution
are greater. Finally, what is labelled IN belongs to the
admissible extension, what is OUT is outside it, and
all the attacks against IN elements are defended
(attacked) by IN elements.

The algorithm from (Nofal, 2016), besides using
looking -ahead within backtracking, integrates some
heuristics to speed -up calculus. Firstly, all arguments
without any attacks are lebelled IN. Secondly, every
time an argument is labelled IN, a „propagation“
takes place, which includes some transformations:
arguments attacked by an IN argument are labelled
OUT, and the arguments that attack an IN argument
become MUST_OUT (-meaning that we must have
an IN attacker for them in the end, as we have
already explained).

2.3. Dynamic backtracking

Backtracking is, essentially, depth -first search. A
major weakness of the algorithm is that after a failure
to assign a value, it traces back to the latest assigned
variable, regardless of its relation to the cause of
inconsistency.

In dependency-directed backtracking or in
backjumping, we backtrack to the source of the
problem, but the partial solution built between the
current point and the source of conflict is blindly
deleted. Dynamic backtracking (Ginsberg, 1993)
solves this problem by remembering for each
variable a list of eliminated values, each being
associated to the couple variable-value that makes the
eliminated value impossible. When we no longer
have valid values for a position, we go back to the
last conflict- that is, the last assigned variable that
eliminates values for the current position, and we un-
assign it, and we also delete this last assigned
variable from the list of „eliminators of values“ of
any variable.

In Section 3, we will write this algorithm from an
argumentation semantics’ computation perspective.
As, from our knowledge, dynamic backtracking in
computing AFs‘ semantics has not been yet
addressed, we intend to explore its possible benefits
in improving efficiency, starting from the idea that
argumentation is dynamic by its nature, and that
dynamic backtracking performs better than looking
ahead, for instance, in general.

3. DYNAMIC BACKTRACKING FOR
ARGUMENTATION FRAMEWORKS

Dynamic backtracking was introduced by Ginsberg
in 1993 (Ginsberg, 1993) and is briefly presented
following.

Being given a Constraint Satisfaction Problem, let P
be the set of currently assigned variables and e an
elimination mechanism (that associates to each
variable i a set of impossible values, according to
constraints originating from the other assigned
variables, at each step of the search).

STEP 1. Set P=Ei ={} for any i from I (Ei is the set of
values that have been eliminated for the variable i);

STEP 2. If P covers all variables from I, return P.
Otherwise, select i unassigned and compute Ei
according to already set variables;

STEP 3. Let S be the set of unassigned variables. If S
non-empty, select v from S. Add (i,v) to P and return
to Step 2.

STEP 4.If S is empty, then Ei=Vi (all possible values
of i have been eliminated). Let E be the set of all
variables appearing in the explanations for each
eliminated value.

STEP 5.If E is empty, return failure. Otherwise, let (j,
vj) be the last entry of P such that j belongs to E.
Remove (j,vj) from P and, for each variable k
assigned a value after j, remove from Ek any
eliminating explanation involving j, then set i=j and
return to Step 3.

The main difference (and advantage) between
dynamic backtracking and dependency -directed
backtracking is that it only saves no-good (conflicts)
information based on currently assigned variables, by
using the eliminatory explanations (which are
dynamically dropped when they are no longer
relevant). As the experiments of Ginsberg show, this
leads to significance improvements, and “increasing
computational savings as the problems become more
difficult”.

We have adapted following the above algorithm to
match our practical reasoning problem.
Dynamic backtracking for computing preferred
extensions in AFs

Let A be the set of arguments, and let R a subset of
AxA be the associated attack relation, E is finally the
set of all admissible extensions.

STEP 1. Sort A descending, starting from the most
influential arguments.
 Initialize:
1. P= {} the set of already set arguments,

31

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2023, VOL. 46, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

2. Ea={} for any a in A, Ea= values
eliminated for argument a, paired with the
argument/value that eliminated them;

STEP 2. if P=A (i.e.-finished labelling arguments),
if P is admissible then
 if {x in A| value (x)=IN} is not a
subset of any set of E
 then E=E U {x| value (x)=IN}
 else let a be the next argument ,

STEP 3. Let S= Va \ Ea (Va = possible values for a,
Ea= eliminated values for a)
 If S ≠ {} then choose first value v in S,
(S={IN, OUT, UNDEC),
 Add (a,v) → P

 If v=IN, (a,v) must be
included in the eliminating explanations for all
arguments b such that a attacks b, for value IN (b
cannot be also IN)
 else (S={}, Va =Ea)
 Let Ela= set of eliminating
arguments for a
 if Ela={} then - FAILURE
 else let (a’, va’) be the last
entry such that a’ is from Ela;
 remove (a’, va’)
from P;
 for any b argument
assigned a value after a’, remove from Eb any
eliminating explanation that involves a’.

4. SIMULATIONS

We have investigated the performance of the
backtracking with look-ahead and heuristics and
dynamic backtracking on the same data sets from
http://sourceforge.net/projects/argtools and we have
obtained, so far, the results in Table 1. We have used
a Intel 2.30 GHz processor. The data is a collection of
argumentation frameworks with more than 100
nodes and complex attack relations.

The algorithm used for comparison is the one
resumed in Section 2 (Nofal, 2016). As far as we
know, it is the most recent approach to inference in
an Argumentation Framework based on backtracking.
It integrates global looking-ahead and a set of
heuristics that we have briefly described in Section 2.
Our hope is that future integration of those heuristics
into dynamic backtracking for arguments will lead to
improved total time.

Table 1. Experimental results

Set of
data

Backtracking
with look-
ahead (time
in seconds)

Adapted
dynamic
backtracking

input0 0.24 4.59

input1 0.26 4.86
input2 0.31 4.73
input3 0.28 5.16
input4 0.28 4.76
input5 0.31 4.72
input6 0.29 4.75
input7 0.34 5.69
input8 0.29 4.81
input9 0.28 5.25
input10 0.24 5.00
input11 0.36 4.77
input12 0.29 4.83
input13 0.28 4.91
input14 0.27 4.92
input15 0.23 5.09
input16 0.32 5.16
input17 0.30 4.93
input18 0.24 4.79
input19 0.28 4.89
input20 0.27 5.00

5. CONCLUSIONS AND FUTURE WORK

Because dynamic backtracking is completed and
always terminated, so does the algorithm in Section
3, as it is a light adaptation of dynamic backtracking.
The efficiency of algorithm in Section 3 (in time and
space) should be compared to other backtracking
approaches to arguments’ semantics’ computing -like
we have already done with the approach from (Nofal,
2016). Although we have found inferior performance,
it would be interesting to integrate new heuristics to
improve this, like, for instance, iterative broadening
(Ginsberg, 1992), and also to investigate how to
include the „propagation“ and the other heuristics
from (Nofal, 2016), to obtain a better performance.

Also, starting from dynamic constraint satisfaction
programs, we could adapt the algorithm in Section 3
for the dynamic version of AFs, and then compare it
to the approach of (Alfano, 2017). Dynamic
constraint satisfaction contextually adds and removes
the constraints that shape the search space and could
therefore be assimilated with the addition or removal
of attacks and arguments in an Argumentation
Framework.

REFERENCES

Alfano G., Greco S., (2017) Efficient Computation of
Extensions for Dynamic Abstract
Argumentation Frameworks: An Incremental
Approach, Proceedings of the Twenty-Sixth
Int. Joint Conf. on Artificial Intelligence, 49-55.

Amgoud, L., Prade H., (2007) Formalizing practical
reasoning under uncertainty: an argumentation-
based approach, IEEE/WIC/ACM International
Conference on Intelligent Agent Technology
(IAT'07), Fremont, CA, USA, pp. 189-195, doi:
10.1109/IAT.2007.15.

32

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2023, VOL. 46, NO. 1, ISSN 2344-4738, ISSN-L 1221-454X

33

Baumann R.,(2011) Splitting an argumentation
framework. LPNMR, pages 40–53.

Baumann R., Ulbricht M., (2021) On cycles,
Attackers and supporters- A Contribution to the
Investigation of Dynamics in Abstract
Argumentation, Ringo Baumann, Marus
Ulbricht, Proceedings of the Thirtieth
International Joint Conference on Artificial
Intelligence, 1780-1786/

Caminada, M., Gabbay D., (2009) A logical account
of formal argumentation, Stud. Log. 93 (2-3)
109- 145.

Dung P. (1995). On the acceptability of arguments
and its fundamental role in nonmonotonic
reasoning, logic programming, and n-person
games. Artificial Intelligence, 77: , 321–357.

Dunne P., Woolridge M., (2009): „Complexity of
abstract argumentation“, Argumentation in
Artificial Intelligence, 85-104.

Ginsberg M.L., Harvey, W.D. (1992). Iterative
broadening, Artificial Intelligence, 55, 367-383.

Ginsberg, M., (1993) Dynamic backtracking,
Journal of Artificial Intelligence Research 1 25-
46.

 Nofal S., Atkinson K., Dunne P., (2016) Looking-
ahead in backtracking algorithms for abstract
argumentation, International Journal of
Approximate Reasoning, 78, 265-282.

