
THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

ELECTROTEHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recommended for publication by Sergiu CARAMAN
45

FUZZY QUERIES IN ROMANIAN LANGUAGE.
AN INTELLIGENT INTERFACE

Cornelia TUDORIE
Cristian NEACSU, Ionel MANOLACHE

Department of Computer Science, University "Dunarea de Jos", Galati

Domneasca 111, 800008 Galati, Tel, Fax: 460182
email: Cornelia.Tudorie@ugal.ro

Abstract: The most accessible interfaces querying databases must be so intelligent, able
to understand natural language expressions and including vague terms in selection
criteria. The paper proposes a general architecture for a flexible database interface and
also a real implementation of such a system. It is general enough, so it can be connected
to any database, after a specific knowledge base description. The natural language
processing is mainly based on lexico-syntagmatical analyse; the vague criteria
interpreting and evaluating are based on the fuzzy logic.

Keywords: Artificial Intelligence, Database, Fuzzy Logic, Fuzzy Queries, Natural
Language

1. INTRODUCTION

Almost all languages for relational database systems
are respecting the SQL norms. They are based on a
Boolean interpretation of the queries: the selection
criterion is always a logical expression, and the
answer always contains only these tuples for what
the expression takes the true value.
In an imprecise query, the selection criterion is
linguistically expressed by vague terms and it can be
satisfied to a certain extent, by some of database
tuples. But, the classical systems don’t accept this
kind of queries.
On the other side, the direct access to databases, even
for data selection, is possible through an artificial
language; only using the language commands, we are
able to express a correct and coherent query.

What can be a possibility for the operator, when he
often wants to send vague queries to the database,
using informal and familiar terms, avoiding the
syntax rigidity?
As an answer to this question, we propose a flexible
system architecture; actually it is an intelligent
software interface, able to be connected to any
classical relational database system, and it acts as a

superior level of the architecture, coming more close
to the operator natural behaviour.

Firstly, we will present the objectives of the proposed
system; after that, the functionality and the structure
of each component will be presented, and also the
interactivity between them.
Finally, a real system, able to Romanian language
vague queries processing, implemented at our
Department, comes as a good example.

2. THE MAIN OBJECTIVES

Before discovering the system’s characteristics, it is
necessary to define the context where our proposed
solution is applicable and the background took in
account in our problem.

The access to databases is possible in the following
two ways:
• operating with application programs, when a

limited set of predetermined functions are
available and

• operating directly on data, using relational
command languages.

The second one is unavoidable when an occasional
operation, in particular terms, is performed. Our

mailto:Cornelia.Tudorie@ugal.ro

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

problem regards exactly this situation, when the
human operator is directly connected to the
database, in order to search data. This kind of
interaction is often useful to those who are not
specialists in informatics; they are interested only in
data looking up. They may be managers or analysts
in various domains, or simply individuals accessing a
public database.

The proposed system is one of the flexible interfaces
for database querying. What are they, their aims,
their functions, and the theoretical or practical
approaches to their development, can be found in
(Tudorie, 2003c).
In the following, some desirable features of the
flexible user interface to access database will be
presented.

The artificial languages generally require rigorous
rules for the query expressing. Therefore, the direct
access to the database through the query language is
used only by the specialists; they well know not only
the syntax, but the logic sense of the query. But
there are other users which don’t have enough
knowledge to realize and express correct and precise
queries (knowledge relating the conceptual data
model, or relational structures, or relational language
syntax); even if their target is clear enough. There is
a common need to offer a better possibility, a more
‘natural’ one to express the request of the user,
without having to accept the strictness of a command
language.

The conventional database systems using query
languages typically offer a mean to specify the
selection criteria, as complex as it can be, very
precise expressed, using Boolean expressions. The
rigidity and specificity of the commonly used query
languages can cause an empty result or a too
complex one; in both cases the information is useless
to the user.
A similar situation can be found when the domain of
an attribute is very wide, the values are too varying
and concrete, so the user has difficulties knowing or
expressing precise criteria.
The solution would be accepting approximate or
vague criteria in the search query; so only objects of
a certain area of interest would be retrieved from the
database. A natural consequence of accepting such
type of criteria will be a result as a list of database
objects, ordered by the grade of satisfaction of the
original query criteria.

Generally following the idea to offer a much more
natural access to a database, we set our point of view
to the two aspects giving the flexibility of the
interface:
• The possibility to express the database query

using the natural language (Romanian

language). The vocabulary that can be used by
the operator will be necessarily restricted to
those specific terms of the domain the database
is operating. The natural language query is
translated into an equivalent form, using the
command language for databases (standard SQL
may be chosen), and then processed by the
database server.

• The possibility to include vague terms into the
query, more exactly into the selection criterion
of the database tuples. Those tuples will then be
correctly interpreted, accordingly to their
signification, and the satisfaction degree of the
selection criterion will be computed for each of
them.

Other characteristics of the database query system
that we consider refers to:
• The interpretation of the result to establish the

satisfaction grade of the vague selection criteria;
the tuples will be displayed in the natural order
of the computed satisfaction degree, and the
ones that don’t respect the criterion at all will not
be displayed.

• The generality character of the interface; it will
act as an intelligent system, able to be connected
to any relational database; provided that a
particular set of meta-knowledge has been
prepared, specifically to the database and the
linguistic context.

To demonstrate the main characteristics of the
system, without describing the details, we present a
query expressed using the Romanian language,
containing vague terms, and the response returned by
the system.

Example 1. The answer to the question
’Care sunt studenţii tineri dar mai ales cu notă

bună ?’
 (‘Who are the young students but mostly with good

mark?’)
using the following table

STUD
Nume

is:

(Name)
. . . Nota

(Mark)
Varsta
(Age)

. . .

Elena 7 20
Ioana 6 23
Maria 8 21
Paul 9 26
Vasile 4 22
Costel 8 24
Ion 10 20

46

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

3. THE INTERFACE’S COMPONENTS

Figure 1 presents a block-scheme that shows the
architecture of the interface at a general level, but
more importantly shows its position regarding the
interaction with the user on one side, and with the
database on the other side.

Fig. 1. The architecture of a flexible interface for

databases

The interface is able to accept user queries, as natural
language phrases and containing vague terms; after
the query interpreting, a covering crisp query is
generated, using the classical SQL language, and sent
to the database server. The answer is then interpreted
by the interface in order to evaluate the degree that
the database tuples are satisfying the selection
criterion, and the final result is displayed to the user.
It’s easy to notice that the intelligent interface has a
knowledge base associated that is specially built for
that one database.

More elements are needed:
• knowledge referring the database scheme
• linguistic knowledge
• knowledge referring the definition of the vague

terms that can be present into the query.
The same knowledge base serves to store the
temporary internal model of the query as it is
generated.

The component modules of the interface are figure
on the scheme and described in the following. The

common characteristic of all modules is their
translator role, which means that, the input object
(the text of the query or a table of values) in a certain
form, is translated into another equivalent object but
in a different form.

Nume

 The T1 translator

The module identified by T1 is by itself a complex
system, which handles the initial phrase, typed by the
user. Generally the query is expressed using natural
language and contains fuzzy terms. The T1 module
(fig. 2) transforms the natural language (Romanian
language) query by translating it into an intermediate
language which is equivalent and much more close to
the database query language, SQL. The semantics of
the initial request and the fuzzy nature are
maintained. The fuzzy model of the query is created
at this step.

Fig. 2. The block-scheme of the T1 module

This module processes the query by executing certain
transformation steps. Each step is figured on the
schema by a sub-module that has a well known role
during the transformation.

The lexical analyzer identifies within the original
phrase the words that are defined in the lexicon and
replaces them with their equivalent form, either a
synonym or a non flexed form of the word; usually
this word is the lexical root of the identified word.
The result is an array of words lexically filtered.

The syntagmatic analyzer handles the array of words
produced earlier, it successively applies some
transformation rules, and in the end it generates an
intermediary list of symbols, directly interpretable by
the semantic analyzer, named significant lexical
sequence.

The semantical analyzer transforms the list of
symbols generated by the syntagmatic analyzer and,
by consulting the database graph (the description of
the data model), it generates an equivalent form of
the initial query, expressed using an intermediary
language.

(Name)
Varsta
(Age)

Nota
(Mark)

Satisfaction
degree of the

criterion
Ion 20 10 1
Maria 21 8 0.66
Costel 24 8 0.66
Elena 20 7 0.6
Ioana 23 6 0.55
Vasile 22 4 0.5

intermediary
language

T1

L
ex

ic
al

A

na
ly

ze
r

Sy
nt

ag
m

at
ic

al

A
na

ly
ze

r

natural
language

vague
terms

lexically
filtered
array Se

m
an

ic
al

A

na
ly

ze
r

vague
terms

Lexicon
Rule
Base DB model

significant
lexical

sequence

 T1

T2

DB

SQL Server

natural language
 fuzzy query

ranked results

QUERYING INTELLIGENT
INTERFACE

Query Model

+

+

linguistic
knowledge

+
fuzzy

knowledge
.

DB Model

KB

T3

T4

47

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

The whole ensemble that forms the T1 module will
be designed to be general, able to be used for any
application, that is any database in any domain. But
the auxiliary information that is used by this module
(the lexicon, the rule base, the database model) is
specifically created for every particular application
domain.

 The T2 translator

The module identified by T2 has the role to
understand the form that the T1 translator has
generated (the fuzzy form of the query) and to create
the final SQL form. Moreover, the T2 module (fig 3)
has to interpret the fuzzy terms contained in the
intermediate form and generates “where” clauses, by
modifying the vague criteria into crisp ones SQL
command. This module uses a knowledge base
containing the information necessary to transform the
fuzzy terms into SQL clauses.

Fig. 3. The block-scheme of the module T2

Fig. 4. The block-scheme of the T3 module

 The T3 translator

The module identified by T3 (fig. 4) is to be found
on the feedback way of the data, and it receives the
answer from the database system and interprets it
accordingly to the significations of the fuzzy terms
present in the initial query.

The answer received from the server is a table that
contains all the information requested by the fuzzy
terms. This module computes for each tuple the
percentage, or a degree that it satisfies the global

fuzzy criteria. This degree is a [0,1] number
according to how much or less the criteria is
satisfied.

 The T4 translator

The processed answer by the T3 translator is then
analyzed by the next module, the T4 module, to
make the final adjustments in order for this answer to
be presented to the user in a comprehensible format.
The precision of the answer may be reflected by the
user’s preferences, and it can be:
• very restrictive (containing only the tuples that

certainly satisfy the criteria, meaning that the
satisfaction degree = 1)

• very permissive (displays all the tuples,
corresponding to not null satisfaction degree)

• moderate (displays the tuples satisfying at least
on half the criteria, degree > 0.5)

• gradually (displays the resulted tuples, with their
satisfaction degree, ordered by it’s value)

T2

SQL
Translator SQL

Command

Fuzzy knowledge
base

vague
terms

intermediary
language

• partially (displays only the tuples satisfying in a
certain measure the criteria)

• or another way.

One can see that the proposed interface interacts on
three directions:
• firstly with the user, reading it’s request, and

presenting back the answer.
• with the knowledge base, at all course of

interpreting the query, both for the natural
language understanding and for the vague terms
processing.

• and finally with the database, that is the main
information support.

T3

Fuzzy Evaluator
crisp

answer
table

Fuzzy
knowledge base

Fuzzy query
model

interpreted
answer
table

4. KNOWLEDGE TYPES.

REPRESENTATION AND PROCESSING

The flexible interface is a part of the intelligence
system category. During the processing, certain types
of information (knowledge) are manipulated, like:
some information are previously presets and load to
the knowledge base (static knowledge); other are
generated, like intermediary results, or like transfer
information among modules (dynamic knowledge);
some of the last ones are stored in the knowledge
base and others in the external memory only.

In the following, all types of knowledge of the
proposed system, are presented one by one.

4. 1. Linguistic knowledge. Interpretation of the

natural language query

The linguistic knowledge interferes in interpreting of
the natural language query, sent by the human

48

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

operator. Some types of linguistic knowledge are
necessary in the sentence analyzing and that result
from module T1 running (fig. 2).

 The Lexicon

The Lexicon represents the collection of all synonym
classes, each of them are represented by a standard
word.

The words which are contained in this vocabulary
can interfere with the expression of the natural
language query, which are addressed to a domain
specific database. Obviously, the lexicon has to be
complete (as many possible), in order to any word
from a sentences to be correctly lettered, to be part of
one but only one class. These words can represent
following:
• a relevant term for the database (attribute name,

table name, for example) or
• a term which can be an operator (logical or

aggregation), or
• fuzzy terms, which participate at criteria

selection statement, or
• words with no database signification, but be part

of syntagmes (are defined in previous paragraph)

Example 2. For example, some lexicon (for the
Romanian language):
DISCIPLIN →DISCIPLINA DISCIPLINE
DISCIPLINELE OBIECT OBIECTUL OBIECTE
OBIECTELE MATERIA MATERIE MATERII EXAMEN
EXAMENUL EXAMENE EXAMENELE
LOCALIT →LOCALITATE LOCALITATEA ADRESA
ADRESE ADRESELE LOCUIESTE LOCUIESC ORAS
DOMICILIU DOMICILIAZA
EGAL →EGAL EGALE EGALI
SAU→ SAU
CAT →CAT CATI CATE CIT CITI CITE
JUR →JUR JURUL
APROXIMATIV →APROXIMATIV CIRCA
RESTANT →PICA RESTANTA RESTANTE
RESTANTIER RESTANTIERI PICAT PICATI
FIECAR→ FIECARE FIECARUI FIECARUIA
DE→ DE
CU→ CU

The words which are not present in the lexicon are
considered as constant values, which are part of the
selection criteria and are marked in distinct way.

 Rules base (syntagmatical rules)

The context is a compact words group. It can be an
empty group ("~").
The syntagme is a pair of two contexts which,
appearing in the text at indefinite distance, define a
certain concept of the speech universe.
The rule base is a collection of production rules
which are applied for the iterative transformation of

the lexical filtered string until to significant lexical
sequence.

Structurally, a rule is defined by following:
 (ss, {s1, s2, ... sn}) => (sd, <cd1, cd2>)
 where:
- ss, sd are the left state and the right state, are

integer numbers representing the analyze
automate states (syntagmatical analyser) before
and after the rule is applied.

- s1, s2, ... sn are the left syntagme. Every
syntagme is: <cs1, cs2>, where cs1, cs2 are
two left contexts. At list cs1 must be different of
empty string (“~"). Notice that the rule given
represents only a compact writing of n array
rules with the same ss, sd, <cd1, cd2>, but with
another pair of left contexts <cs1, cs2>;

- cd1, cd2 are two right contexts; them also can
be the empty string.

The contexts which are part of the rules are called
pattern-contexts. For every pattern-context exists a
multitude of context-instances; this is the case of
constants for example, which inside of the rule are
interfering with there indicative. For example, rule:
(1,< DIN &C,~ >) => (1, < LOCALIT &C,~
>)
can generate in the same manner any of the following
transformation:
DIN &C_GALATI → LOCALIT &C_GALATI
DIN &C_TECUCI → LOCALIT &C_TECUCI

4. 2. Database model. Query command generation

Our system is able to connect as interface to any
relational database.
The database model which the semantically analyzer
module is based contains the structural description of
the database, that is:
• tables name
• table structure (columns name and type)
• the relations between the database tables
A set of syntax rules to show the data model, can be:
<database>::= <table_description>

< table_description >. . .
 < table_description >

<table_description> ::=<table_name><column_list>
<column_list>::= <column_description>

<column_description>. . .
<column_description>

<column_description> ::=
 &<column_type>_<column_name>[<link>]
<column_type> ::= N | C | D | L
<link> ::= <integer_number>
Example 3. Now let’s look at the database structure
that we have used to evaluate the natural language
queries:

49

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

STUDENT &N_MATR3 &C_NUME &C_LOCALIT
&N_TEL &D_DN &N_GRUPA &N_AN &C_SPEC
DISC &N_CODD3 &C_DEN &C_PROF
CATALOG &N_CODS1 &N_DIS2 &N_NOTA

4. 3. Fuzzy knowledge. The fuzzy queries and answer
interpretation

Fuzzy knowledge is used to the fuzzy criteria
interpreting, which sometimes may be included by
the operator in the database queries.

Also this knowledge is very important in the answer
interpretation, in order to provide a useful response
to the operator.

The knowledge is represented by a list of fuzzy terms
definition, significant for the database domain
application.

The theory of fuzzy sets and fuzzy logic is the
appropriate framework in the vague expressions
modelling and vague queries evaluation.

Fuzzy predicate is an assertion that may be more or
less true, depending on the variables values. It is an
extension of the classical logical predicate, that can
be either definite true, or definite false. The truth-
value of the vague predicate may be express as a
number in [0,1], with standing 1 for definitely true
and 0 for definitely false.
Usually, the fuzzy predicate is defined by a fuzzy set
or a fuzzy number.

The following description must be contained in the
fuzzy knowledge base:
• linguistic domain of the tables attributes, which

can interfere in the data selection fuzzy criteria;
it contains a set of labels corresponding to the
fuzzy predicate which are defined also as fuzzy
sets on the attribute crisp domain.

• common linguistic modifiers (applicable for
every fuzzy predicate), or specific linguistic
modifiers (applicable to particular fuzzy
predicates).

• linguistic comparators, which generally are
common and are applicable for every linguistic
domain

• fuzzy logic connectives, which are generally
used in any fuzzy logic expression

• linguistic quantifiers, applicable for any group
of tuples, not mater what the selection criteria is.

A review of several categories of linguistically terms
with vague meaning, their fuzzy model and specific
operations are presented in (Tudorie, 2003a),
(Tudorie, 2003b), and many others.

We can notice the general character of the system,
explained by following:
• all particular information, specific to the

database, have been grouped into a knowledge
base very large, perfectly separated by the
interface itself.

• the database query command is generated in the
SQL standard language, known by the
commonly relational database systems.

Therefore, to adapt the system for a new database,
from a new domain, we have to:
• make a new knowledge base, for the particular

application domain;
• eventually, a minor configuration of the connect

parameters, only in case we choose another
system to store the database.

5. RoFQuery – FUZZY QUERYING IN
ROMANIAN LANGUAGE INTERFACE

The RoFQuery system is an intelligent database
interface built like the model presented previously.
The system allows database querying, without
interact with standard tool for access that. The
natural language is the user expression means; it is
about a limited language (vocabulary), containing
only terms proper to the database domain application.
The general scheme, which explains the information
flow in the RoFQuery interface, is presented in figure
5.

Rule
Base Lexicon DB model

Fig. 5. Query processing steps in RoFQuery

The main functions of the system are:
- analyzing the natural language sentence entered

by user, containing or not fuzzy terms ;
translating it in a crisp formal language, and
sending it as a usual query to the database
server.

- connecting to any database, but only after
already having prepared a knowledge base
proper to the database context.

intermediary
language

L
ex

ic
al

A

na
ly

ze
r

Sy
nt

ag
m

at
ic

al

A
na

ly
ze

r

natural
language

Se
m

an
ic

al

A
na

ly
ze

r

vague
terms

vague
terms

lexically
filtered
array

significant
lexical

sequence

SQL
Translator

DB
Server

SQL
Command

Fuzzy
Knowledge

Base

50

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

- analyzing each row of the answer from the
system and assigning a value according to the
satisfaction degree of fuzzy criteria.

- assisting the knowledge engineer to update the
knowledge base, directly throw the interface.
The connection is possible anytime from
anywhere throw web interface, login and
password.

- providing a password and user privileges
system. The administrator has all privileges
about the knowledge base and database; other
users only to query the database.

In figure 6 the main components of the system are
presented, with interactions between user and
information contained in the system.

The lexico – syntagmatical analyzer transforms the
user phrase, using the knowledge from the system, to
an array of symbols, named significant lexical
sequence. The analyzer, firstly executes a lexical
analyse and next a collocation analyse. The lexical
analyzer deals with elimination of separators from
user phrase and then normalize the input, replacing
the words with their representatives from the lexicon.
Any word which it is not founded in the lexicon it is
considered a constant value, a lexical atom which
have meaning in association with others.

Fig. 6. The RoFQuery system’s architecture

Example 4. The query

’Ce studenţi foarte batrâni au nota în jur de 8 la
Grafică?’

(’What student very olds have grade close to 8 at
Graphics?’)

is addressed to the database:
 STUDENT [matr, nume, localitate, dn, grupa]
 DISC [codd, Den, Prof]
 CATALOG [matr, codd, nota]
The result of the lexical analyse is:

* STUDENT DEN &C_GRAFICA NOTA
&F_JUR &N_8

The syntagmatical analyzer takes up the list of words
and transforms it, throw successive operations, to a
list of symbols which is interpreted by the semantic

analyzer. It uses the rule base existing into the
knowledge base.

Example 5. In the process of syntagmatical analyze,
the query from example 4 goes throw following
steps:
Step 1 : CE STUDENT FOARTE BATRAN ARE
NOT #JUR &N_8 LA &C_GRAFICA $$
Step 2 : CE STUDENT FOARTE BATRAN NOT
#JUR &N_8 LA &C_GRAFICA $$
Step 3 : CE STUDENT FOARTE BATRAN NOT
#JUR &N_8 DEN &C_GRAFICA $$
Step 4 : * STUDENT FOARTE BATRAN NOT
#JUR &N_8 DEN &C_GRAFICA $$
Step 5 : * STUDENT FOARTE DN #BATRAN
NOT #JUR &N_8 DEN &C_GRAFICA $$
Step 6 : * STUDENT DN FOARTE #BATRAN
NOT #JUR &N_8 DEN &C_GRAFICA $$
Step 7 : * STUDENT DN #FOART #BATRAN
NOT #JUR &N_8 DEN &C_GRAFICA $$
Step 8 : * STUDENT DN #FOART #BATRAN
NOTA #JUR &N_8 DEN &C_GRAFICA $$

A similar natural language analyse processing is
presented in (Cristea, 1987) and it has strongly
influenced our present approach.

The semantical analyzer takes up the array of
symbols resulted from the syntagmatical analyze and
builds the crisp SQL query, using knowledge from
the database graph, operators dictionary, functions
dictionary, fuzzy terms dictionary and fuzzy
modifiers dictionary. A few notes about dictionaries:

I
N
T
E
R
F
A
C
E

KNOWLEDGE BASE

Rule
Base

Lexicon

Lexico-
syntagmatical

Analyzer

Semantical
Analyzer

SQL
Interpretor

BD

Fuzzy modifiers
 Dictionary

Database
model

Fuzzy terms
Dictionary

Function
Dictionary

User

query

Answer Fuzzy
Interpretor

SQL query Final
result

Knowledge
engineer The operators dictionary contains caption of math

operators used to build SQL “where” condition. Each
line looks like:

<operator_name> | <math_symbol>
For example for math operator “ >= “ :
 MAREGAL|>=
The functions dictionary contains name of functions
used to process data, used into SQL query.
The lines are in the following form:

<function_name>#<table>#<task> .
Example for calculate the student age:
VARSTA#STUDENT#
 round (MONTHS_BETWEEN (sysdate,
 to_date(student.dn, 'DD-MM-YYYY'))/12,2)
The fuzzy terms dictionary contain the fuzzy model
of the vague terms, expected to be included into the
user queries.
Each term is defined specifically for one table
column.
The lines are in the following form:
!<table> <column>
 #<term_name>|[<applied_function>]|
 <int1> <int2> <int3> <int4>
 <sense> <pitching>
Where <sense> is the direction (left/centre/right) of
the action of the condensation modifier (or, in other

51

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

words, the position of the linguistic value on the
attribute domain),
and <pitching> refers to, on modifier action, the
fuzzy support is limited or not, in the direction given
by <sense> (left/right).

For example:
!STUDENT DN
#TANAR|VARSTA|0 0 20 22 s b
The defined term is #TANAR and applicable to field
DN (birthday) from table STUDENT, throw function
VARSTA.

The fuzzy modifiers dictionary contains the model of
the linguistic modifiers which can be used in queries
expression. They are universal and can be applied to
any fuzzy term, which his definition can be extended
to left or to right. The lines are to following form:

#<modifier_name>|< percentage>
For example:
#FOART|25

The fuzzy modifiers can be used in some fuzzy terms
context, with role to modify their definition. In
previous example, the modifier #FOART is defined
like to represent 25%; so that, the support and core
which define the fuzzy term, is modified accordingly
to modifier percentage.

Example 6. Following-up the query evaluation from
example 4 and 5, the result of the semantical analyze
is:
SELECT
 STUDENT.*,
 year(sysdate()) - year(STUDENT.DN) VARSTA ,
 CATALOG.NOTA,DISC.DEN
 FROM
 STUDENT,CATALOG,DISC
 WHERE
 year(sysdate()) - year(STUDENT.DN) > 28.75
 AND
 year(sysdate()) - year(STUDENT.DN) <= 100.0
 AND CATALOG.NOTA > 7.5
 AND CATALOG.NOTA < 8.5
 AND DISC.DEN LIKE '%GRAFICA%'
 AND STUDENT.MATR=CATALOG.CODS
 AND CATALOG.DIS=DISC.CODD
 ORDER BY
 CATALOG.NOTA, VARSTA DESC,
 STUDENT.DN, DISC.DEN

The SQL interpreter is the one which connecting to
database, through the database management system,
deals with the SQL query running.

Fig. 7. The user interface of the RoFQuery System

The fuzzy interpreter analyzes the answer from the
database system and processes it, gives to each
answer line a value representing the fuzzy criteria
satisfaction degree.

The user interface, functionally speaking, is split in
two parts, by the role regarding the connected user.
So that, the knowledge engineer, with ‘administrator’
role has right to modify any dictionary or parameter
involved in the internally functionality of the system
(that is the knowledge base) and in the same time can
query the databases; the simple operator can only
send queries to the system.

The user interface is Web type, developed with last
technologies, which result in a simple installation,
connecting and utilization (user friendly interface).
Application screenshot in figure 7.

6. CONCLUSIONS

This paper presented a flexible intelligent interface
for database querying. The two big advantages of the
system are: using natural language (Romanian
language) for expressing of the query (not need to
learn SQL language) and using fuzzy terms (for
expression gradual properties, approximation or
intensify properties). The system has a knowledge
base containing linguistic knowledge for the database
application domain, and fuzzy terms definition. The
comprehension level of query (that is the system
flexibility) is higher that the knowledge base is more
completed. So that, through the user interface, the
knowledge base can be more continuous enriched by
any authorized user, having the role of the
knowledge engineer. We remark the general
character of the system, which can be connected and
used like an interface to query any database, but with
condition the particular knowledge base must be
prepared in advance for this task.

52

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

7. REFERENCES

 Project BADINS. (1995). Bases de données

multimédia et interrogation souple. Rapport
d’activité scientifique, Institut de recherche en
informatique et systèmes aléatoires, Rennes

Cristea, D. (1987). Sistemul QUERNAL, In C.
Giumale, D. Preoţescu, L.D. Şerbănaţi, D.
Tufiş, D. Cristea (eds.), LISP, Editura Tehnică,
Bucureşti, 1987, pp 215-229

Dubois, D., Prade, H. (1996). Using fuzzy sets in
flexible querying: Why and how?, In H.
Christiansen, H.L. Larsen, T. Andreasen (eds.),
Workshop on Flexible Query-Answering
Systems, pp. 89-103

Kacprzyk, J.., Zadrozny, S. (2001). Computing with
words in intelligent database querying:
standalone and Internet-based applications,
Information Sciences, 134, Elsevier, pp.71-109

Pivert, O. (1991). Contribution à l'interrogation
flexible de bases de données - Expression et
évaluation de requêtes floues, Thèse, Université
de Rennes I

Tudorie, C. (2003a). Cercetări privind aplicarea
tehnicilor de inteligenţă artificială pentru
interogarea bazelor de date. Scientific Rapport,
University ’Dunărea de Jos’, Galaţi

Tudorie, C. (2003b). Vague criteria in relational
database queries. In Bulletin of “Dunarea de
Jos” University of Galaţi, III/2003, pp. 43-48

Tudorie, C. (2003c). Contribuţii la realizarea unei
interfeţe inteligente pentru interogarea bazelor
de date. Scientific Report, University ’Dunărea
de Jos’, Galaţi, 2003

Yager, R.R. (1991). Connectives and quantifiers in
fuzzy sets, In Fuzzy Sets and Systems, 40-1,
Elsevier Science, pp 39-75

53

	4. 1. Linguistic knowledge. Interpretation of the natural language query
	4. 2. Database model. Query command generation
	4. 3. Fuzzy knowledge. The fuzzy queries and answer interpretation

