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Abstract: this paper contains an overview of basic formulations and approaches to 
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1. INTRODUCTION 
 
The Web has become a vast storehouse of 
knowledge, built in a decentralized yet 
collaborative manner. It is a living, growing, 
populist, and participatory medium of expression 
with no central editorship. This has positive and 
negative implications. On the positive side, there is 
widespread participation in authoring content. 
Compared to print or broadcast media, the ratio of 
content creators to the audience is more equitable. 
On the negative side, the heterogeneity and lack of 
structure makes it hard to frame queries and satisfy 
information needs. 

Statistical dependencies between terms, Web pages, 
and hyperlinks are also called patterns; the act of 
searching for such patterns is called machine 
learning, or data mining. 

The data in web mining consists of text, hypertext 
markup, hyperlinks, sites, and topic directories. 
This distinguishes the area of Web mining as a new 
field, although it also borrows liberally from 
traditional data analysis.  

The World Wide Web is the largest and most 
widely known repository of hypertext. Hypertext 
documents contain text and generally embed 
hyperlinks to other documents distributed across 
the Web. Today, the Web comprises billions of 
documents, authored by millions of diverse people, 
edited by no one in particular, and distributed over 
millions of computers that are connected. Citation, 
a form of hyperlinking, is as old as written 
language itself. Dictionaries and encyclopedias can 
be viewed as a self-contained network of textual 
nodes joined by referential links. Words and 
concepts are described by appealing to other words 
and concepts. 

The richness of Web content has also made it 
progressively more difficult to leverage the value of 
information. The new medium has no inherent 
requirements of editorship and approval from 
authority. 

The Web is a set of documents, where each 
document is a multiset (bag) of terms. Hypertext 
data is semistructured or unstructured, because they 
do not have a compact or precise description of data 
items. Such a description is called a schema, which 
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is mandatory for relational databases. The second 
major difference is that unstructured and 
semistructured hypertext has a very large number of 
attributes, if each lexical unit (word or token) is 
considered as a potential attribute. 

Organizing knowledge into ontologies is an ancient 
art, descended from philosophy and epistemology. 
An ontology defines a vocabulary, the entities 
referred to by elements in the vocabulary, and 
relations between the entities. The entities may be 
fine-grained, as in WordNet, a lexical network for 
English, or they may be relatively coarse-grained 
topics, as in the Yahoo! topic directory. 

Topic directories offer value in two forms. The 
obvious contribution is the cataloging of Web 
content, which makes it easier to search. The 
second contribution is in the form of quality control 
and tend to reflect the more authoritative and 
popular sections of the Web. 

Topic directories built with human effort (e.g., 
Yahoo! or the Open Directory) lead to a question: 
Can they be constructed automatically out of a 
corpus of Web pages, such as collected by a 
crawler?  

The practice of classifying objects according to 
perceived similarities is the basis for much of 
science (Jain and Dubes 1988). Organizing data 
into sensible groupings is one of the most 
fundamental modes of understanding and learning. 
Cluster analysis is the formal study of algorithms 
and methods for grouping, or classifying, objects. 
An object is described either by a set of 
measurements or by relationships between the 
object and other objects. Cluster analysis does not 
use category labels that tag objects with prior 
identifiers. The absence of category labels 
distinguishes cluster analysis from discriminant 
analysis (and pattern recognition and decision 
analysis). The objective of cluster analysis is 
simply to find a convenient and valid organization 
of the data, not to establish rules for separating 
future data into categories. Clustering algorithms 
are geared toward finding structure in the data. 

A cluster is comprised of a number of similar 
objects collected or grouped together. Everitt 
documents some of the following definitions of a 
cluster (Everitt, 1974): 

1. “A cluster is a set of entities which are alike, and 
entities from different clusters are not alike.” 

2. “A cluster is an aggregation of points in the test 
space such that the distance between any two points 
in the cluster is less than the distance between any 
point in the cluster and any point not in it.” 

3. “Clusters may be described as connected regions 
of a multi-dimensional space containing a relatively 
high density of points, separated from other such 
regions by a region containing a relatively low 
density of points.” 

Making sense of data is an ongoing task of 
researchers and professionals in almost every 
practical endeavor (Pedrycz, 2005). The age of 
information technology, characterized by a vast 
array of data, has enormously amplified this quest 
and made it even more challenging. Data collection 
anytime and everywhere has become the reality of 
our lives. Understanding the data, revealing 
underlying phenomena, and visualizing major 
tendencies are major undertakings pursued in 
intelligent data analysis, data mining, and system 
modeling. 

A clustering algorithm discovers groups in the set 
of documents such that documents within a group 
are more similar than documents across groups. 

Clustering is a classic area of machine learning and 
pattern recognition. Clustering and classification 
are at two opposite extremes with regard to the 
extent of human supervision they need. Real-life 
applications are somewhere in between, because 
unlabeled data is easy to collect but labeling data is 
onerous. 

Cluster analysis is a statistical technique used to 
generate a category structure which fits a set of 
observations (Frakes and Baeza-Yates, 1992). The 
groups which are formed should have a high degree 
of association between members of the same group 
and a low degree between members of different 
groups. While cluster analysis is sometimes 
referred to as automatic classification, this is not 
strictly accurate since the classes formed are not 
known prior to processing, as classification implies, 
but are defined by the items assigned to them. 

Clustering is useful for taxonomy design and 
similarity search. Topic taxonomies such as Yahoo! 
and the Open Directory (dmoz.org) are constructed 
manually, but this process can be greatly facilitated 
by a preliminary clustering of large samples of Web 
documents. Clustering can also assist fast similarity 
search. Similarity, in a rather general way, is 
fundamental to many search and mining operations 
on hypertext and is central to most of this book. 
The utility of clustering for text and hypertext 
information retrieval lies in the so-called cluster 
hypothesis: given a “suitable” clustering of a 
collection, if the user is interested in document d, 
he is likely to be interested in other members of the 
cluster to which d belongs. The cluster hypothesis 
(Rijsbergen, 1979) is not limited to documents 
alone. 
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This article contains an overview of basic 
formulations and approaches to clustering. Also it 
presents two important clustering paradigms: a 
bottom-up agglomerative technique, which collects 
similar documents into larger and larger groups, 
and a top-down partitioning technique, which 
divides a corpus into topic-oriented partitions. 
These are followed by a slew of clustering 
techniques that can be broadly classified as 
embeddings of the corpus in a low-dimensional 
space so as to bring out the clustering present in the 
data. 

2. PROBLEM FORMULATION 

It is given a collection  of documents (in 
general, entities to be clustered). Entities either may 
be characterized by some internal property, such as 
the vector-space model for documents, or they may 
be characterized only externally, via a measure of 
distance (dissimilarity) 

D

),( 21 ddδ  or resemblance 

(similarity) ),( 21 ddρ  specified between any two 
pairs of documents. For example the Euclidean 
distance between length-normalized document 
vectors for δ  can be used and cosine similarity for 
ρ  (Chakrabarti, 2003). 

One possible goal that can be set up for a clustering 
algorithm is to partition the document collection 
into  subsets or clusters  so as to 
minimize the intracluster distance 

or maximize the 

intracluster resemblance ∑ ∑ . 

If an internal representation of documents is 
available, then it is also usual to specify a 
representation of clusters with regard to that same 
model. For example, if documents are represented 
using the vector space model, a cluster of 
documents may be represented by the centroid 
(average) of the document vectors. When a cluster 
representation is available, a modified goal could 
be to partition  into  so as to 

minimize 
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One could think of assigning document  to 
cluster  as setting a Boolean variable  to 1. 
This can be generalized to fuzzy or soft clustering 
where  is a real number between zero and one. 

In such a scenario, one may wish to find  so as 

to minimize 

d
i idz ,
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3. BOTTOM-UP AND TOP-DOWN 
PARTITIONING TECHNIQUES 

The heuristic is to start with all the documents and 
successively combine them into groups within 
which interdocument similarity is high, collapsing 
down to as many groups as desired. This style is 
called bottom-up, agglomerative, or hierarchical 
agglomerative clustering (HAC) and is 
characterized by the pseudocode: 

1. let each document  be in a singleton group 
 

d
}{d

2. let G  be the set of groups 

3. while  do 1|| >G

4. choose G∈ΔΓ,  according to some 
measure of similarity  ),( ΔΓs

5. remove Γ and Δ  from G 

6. let ΔΓ=Φ U  

7. insert Φ  into G 

8. end while 

 

 

Fig. 1. A dendrogram presents the progressive, 
hierarchy-forming merging process pictorially. 

Typically, the earlier mergers happen between 
groups with a large similarity . This 
value becomes lower and lower for later merges.  

)( ΔΓUs
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Algorithms differ as to how they compute the 
figure of merit for merging  and . One 
commonly used measure is the self-similarity of 

. The selfsimilarity of a group of documents 
 is defined as the average pairwise similarity 

between documents in  
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where the TF-IDF cosine measure is commonly 
used for interdocument similarity . Other 
merger criteria exist. One may choose to merge that 
pair of clusters , which maximizes 

, , 

or 
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3.1. The k-Means Algorithm 

Bottom-up clustering, used directly, takes quadratic 
time and space and is not practical for large 
document collections. If the user can preset a 
(small) number k of desired clusters, a more 
efficient top-down partitioning strategy may be 
used. 

The best-known member of this family of 
algorithms is the k-means algorithm. Further, will 
be discusses two forms of the k-means algorithm 
here. One makes “hard” (0/1) assignments of 
documents to clusters. The other makes “soft” 
assignments, meaning documents belong to clusters 
with a fractional score between 0 and 1. 

3.2. k-means with “hard” assignment 

In its common form, k-means uses internal 
representations for both the objects being clustered 
and the clusters themselves. For documents, the 
vector-space representation is used, and the cluster 
is represented as the centroid of the documents 
belonging to that cluster. 

The initial configuration is arbitrary (or chosen by a 
heuristic external to the k-means algorithm), 
consisting of a grouping of the documents into k 
groups, and k corresponding vector-space centroids 
computed accordingly. Thereafter, the algorithm 
proceeds in alternating half-steps, as shown below 

1. initialize cluster centroids to arbitrary 
vectors 

2. while further improvement is possible do 

3. for each document d do 

4. find the cluster c whose centroid is 
most similar to d 

5. assign d to this cluster c 

6. end for 

7. for each cluster c do 

8. recompute the centroid of cluster c 
based on documents assigned to it 

9. end for 

10. end while 

The basic step in k-means is also called move-to-
nearest, for obvious reasons. A variety of criteria 
may be used for terminating the loop. One may exit 
when the assignment of documents to clusters 
ceases to change (much), or when cluster centroids 
move by negligible distances in successive 
iterations. 

3.3. k-means with “soft’ assignment 

Rather than make any specific assignment of 
documents to clusters, the “soft” variant of k-means 
represents each cluster c using a vector cμ in term 
space. Since there is no explicit assignment of 
documents to clusters, cμ  is not directly related to 
documents — for example, it is not necessarily the 
centroid of some documents. 

The goal of “soft” k-means is to find a cμ  for each 
c so as to minimize the quantization error 

2||min∑ −
d ccc d μμ .  

A simple strategy to iteratively reduce the error is 
to bring the mean vectors closer to the documents 
that they are closest to. The documents are scan 
repeatedly, and for each document d, a “correction” 

cμΔ c is accumulated for that cμ  that is closest to 
d: 

∑
⎩
⎨
⎧ −

=Δ
d

cc
c

d
otherwise                            0

d closest to is  if  ),( μμη
μ  

After scanning once through all documents, all the 
scμ  are updated in a batch by setting all 

ημμμ ⋅Δ+← ccc  is called the learning rate. It 
maintains some memory of the past and stabilizes 
the system. Note that each d moves only one cμ  in 
each batch. 
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The contribution from d need not be limited to only 
that cμ  that is closest to it. The contribution can be 
shared among many clusters, the portion for cluster 
c being directly related to the current similarity 
between cμ  and d. For example, it can be soften to 
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Many other update rules, similar in spirit, are 
possible. 

4. LATENT SEMANTIC INDEXING (LSI) 

Let the term-document matrix be A where the entry 
A[t, d] may be a 0/1 value denoting the occurrence 
or otherwise of term t in document d. More 
commonly, documents are transformed into TFIDF 
vectors and each column of A is a document vector. 

In the vector-space model, it is allocated a distinct 
orthogonal direction for each token. The obvious 
intuition is that there is no need for so many (tens 
of thousands) of orthogonal directions because 
there are all sorts of latent relationships between the 
corresponding tokens. Car and automobile are 
likely to occur in similar documents, as are cows 
and sheep. Thus, documents as points in this space 
are not likely to nearly “use up” all possible 
regions, but are likely to occupy semantically 
meaningful subspaces of it. Another way of saying 
this is that A has a much lower rank than 

. One way to reveal the rank of A 
is to compute its singular value decomposition 
(SVD). Without going into the details of how the 
SVD is computed, which is standard, the 
decomposed form of A is 
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where r is the rank of A, U and V are column-
orthonormal ( , the identity 
matrix), and the diagonal matrix  in the middle 
can be organized (by modifying U and ) such 
that 

IVVUU TT ==
Σ

V
01 >≥≥ rσσ K . 

The standard cosine measure of similarity between 
documents can be applied to the A matrix: the 
entries of   may be interpreted as the 
pairwise document similarities in vector space. The 
situation is completely symmetric with regard to 
terms, and can be regarded the entries of 

 as the pairwise term, similarity based 
on their co-occurrence in documents. 

||||)( DD
T AA ×

||||)( TT
TAA ×

The tth row of A may therefore be regarded as a 
-dimensional representation of term t, just as 

the dth column of A is the -dimensional vector-
space representation of document d. Because A has 
redundancy revealed by the SVD operation, a 
“better” way to compute document-to-document 
similarities can be used as |  and 

term-to-term similarities as . In 
other words, the tth row of U is a refined 
representation of term t, and the dth row of V is a 
refined representation of document d. Both 
representations are vectors in an r-dimensional 
subspace, and it can be talked about the similarity 
of a term with a document in this subspace. In 
latent semantic indexing (LSI), the corpus is first 
used to precompute the matrices U, , and V. A 
query is regarded as a document. When a query “q” 
is submitted, it is first projected to the r-
dimensional “LSI space” using the transformation 

|| D
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At this point q)  becomes comparable with the r-
dimensional document representations in LSI 
space. Now one can look for document vectors 
close to the transformed query vector. In LSI 
implementations, not all r singular values are 
retained. A smaller number k, roughly 200 to 300, 
of the top singular values are retained—that is, A is 
approximated as 

∑
≤≤

⋅⋅=
ki

T
iiik vuA

1
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where iur  and ivr  are the ith columns of U and V. 

How good an approximation is ? The Frobenius 
norm of A is given by 
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and 

22
1
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1
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That is,  is the best rank-k approximation to A 
under the Frobenius norm.  

kA

The above results may explain why retrieval based 
on LSI may be close to vector-space quality, 
despite reduced space and perhaps query time 
requirements (although the preprocessing involved 
is quite time-consuming). Interestingly, in practice, 
LSI does better, in terms of recall/precision, than 
TFIDF retrieval. Heuristic explanations may be 
sought in signal-processing practice, where SVD 
has been used for decades, with the experience that 
the dominating singular values capture the “signal” 
in A, leaving the smaller singular values to account 
for the “noise.” In IR terms, LSI maps synonymous 
and related words to similar vectors, potentially 
bridging the “syntax gap” in traditional IR and thus 
improving recall.  

LSI may also be able to exploit correlations 
between terms to resolve polysemy in some 
situations, improving precision as well.  

LSI/SVD was view as a device for dimensionality 
reduction, noise filtering, and ad hoc retrieval. It 
can also be used for visualization (choose k = 2 or 
3) or clustering, by using any of the other 
algorithms after applying SVD. 

 

5. CONCLUSIONS 
 
This paper has presented an overview of basic 
formulations and approaches to clustering. Then it 
presented two important clustering paradigms: a 
bottom-up agglomerative technique, which collects 
similar documents into larger and larger groups, 
and a top-down partitioning technique, which 
divides a corpus into topic-oriented partitions. After 
that a slew of clustering techniques were presented 
that can be broadly classified as embeddings of the 
corpus in a low-dimensional space so as to bring 
out the clustering present in the data. 
 

6. REFERENCES 

Chakrabarti, S. (2003). Mining the Web: 
Discovering Knowledge from Hypertext Data, 
Morgan Kaufmann Publishers, San Francisco, 
USA. 

Everitt, B. S. (1978). Graphical Techniques for 
Multivariate Data. ElsevierNorth-Holland Inc., 
New York, USA. 

Frakes, W. B. and R. Baeza-Yates (1992) 
Information Retrieval: Data Structures & 
Algorithms. Prentice Hall PTR, New York, 
USA 

Jain, K.A. and R.C. Dubes (1988). Algorithms for 
Clustering Data. Prentice Hall, Englewood 
Cliffs, New Jersey. 

Pedrycz, W. (2005). Knowledge-Based Clustering. 
From Data to Information Granules. John 
Wiley & Sons, Inc., Hoboken, New Jersey. 

Rijsbergen, C. J. (1979) Information Retrieval, 
Butterworths, London. 

                                                 

 
59


	1.  
	6. REFERENCES

