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Abstract: In this paper a discrete-time adaptive sliding mode controller for three
wheels mobile robot (WMR) is presented. The dynamical model with time-varying
mass has been taken into account. The sliding-mode controller has designed on two
components, corresponding to angular and linear displacement, respectively. In order
to accomplish the robustness against parameter uncertainties an on-line closed loop
identification scheme is proposed. To the both of them, angular and linear
displacement controllers, parameter estimates depending of the robots mass, on-line

updated, are used.
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1. INTRODUCTION

The WMR are extensively used in transportation,
welding and painting operations from metallurgic
and naval industries, as well as in polluted and
human inaccessible places. A number of different
approaches have been proposed in the literature for
stabilization of WMR (Canudas de Wit and Sordalen,
1997, Canudas de Wit, Siciliano and Valavanis,
1998). The trajectory tracking and path following
operations are widely used in real-time
implementations, since WMR, working in closed
loop, are usually required to follow an a priori
planned path, with or without time dependency. The
control problem of nonholonomic systems when
there are model uncertainties has been widely
addressed. Relatively few results have been presented
about the robustness of WMR control concerning
model uncertainties and external disturbances. The
performing control design, using the kinematical
model of the vehicle does not explicitly take into
account parameters variation (robot mass and
moment of inertia) and external
disturbances(frictions and viscous forces).

Therefore, in certain situations the kinematic model
of the WMR could be restrictive for controller
design. The kinematical model is a simplified
representation and does not correspond to reality of
moving vehicle, which has unknown or time varying
mass, frictions and wheel usages. All of these have
well pointed out in Fierro and Lewis, 1997.
Therefore, the dynamical model seems to be more
relevant concerning uncertainties The controller
design using the WMR dynamical model, where
uncertainties in the robot physical parameters can be
explicitly taken into account, tends to interest actual
researches on this field (Coelho and Nunes 2002).
The structural (parameter) and/or un-structural
uncertainties in the model of the MIMO non-linear
systems and the difficulties in parameter
identification make necessary the design of the
controller such that the closed loop robustness is
achieved. It is well known that the robustness to
structural, un-structural uncertainties and external
disturbances of the WMR closed loop can be
achieved with a variable structure controller (Aghilar,
and all. 1997; Filipescu, and all 2003; Utkin, 1992;

Yu and Xu 2002). Maintaining the system on a
sliding surface weakens the influence of the
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uncertainties in the closed loop and quickly leads to
an equilibrium point. The main advantage of the
discrete-time sliding mode control is with the direct
and easy real-time implementation. Since the sliding
mode control is original from continuous time is
more difficult to quantify when a discrete-time
implementation is adopted. The discrete-time sliding
mode control (Young et all, 1999; Yu and Xu, 2002)
is quiet different of the accepted practice of
performing the control design in the continuous-time
domain. Many implementations are based on
discretization, with sufficiently fast sampling rate, of
the controllers designed in continuous-time. The
rapid progress of the microprocessor based hardware
encourages on this way. Discrete-time sliding mode
controller design is usually based on an approximate
sliding mode system evolution due to the non unique
attractiveness condition and approximate sitting on
sliding surface (Furuta 1990; Yu and Xu, 2002). The
robust trajectory tracking problem has been
addressed in Yang and Kim, 1999 using a continuous
time sliding mode control technique, the discrete-
time controller being obtained after discretization. In
that approach, the control law presents singularities
for specific trajectories and requires supplementary
assumptions on the possible WMR motions.
However, the proposed control scheme had the
advantage to solve the trajectory tracking problem
based on dynamical model and for non closed form
of the reference trajectory. In this paper, the
trajectory tracking problem for three wheels mobile
robot in the presence of uncertainties (time varying
mass) has been solved by means of discrete-time
sliding mode control law based on the discrete-time
WMR  dynamical model. The asymptotic
boundedness of the tracking error has been proofed.
The paper is organized as follows. In Section 3 the
dynamical model of three wheels mobile robot is
presented. State apace model, its uncertainties and
nonholonomic constraint are presented, too. The
discrete-time state space model, the nonholonomic
constraint and the output tracking errors of the WMR
are depicted in Section 3. In Section 4 an on-line
parameter identification scheme is presented. The
sliding mode adaptive controller, associated to
angular displacement, is designed in Section 5.
Section 6 is dedicated to linear displacement sliding
mode controller design. Closed loop simulation
results are presented in Section 7. Some conclusion
remarks from Section 8 and References can be found
at end of the paper.

2. CONTINUOUS-TIME WMR DYNAMICAL
MODEL

In figure 1 is shown the schema of a WMR, where
XY is an inertial reference system and XY  is one
fixed with the vehicle. The vehicle dynamics is fully
described by a three dimensional vector of
generalized coordinates q(t) constituted by the

coordinates ((x(t), y(t))) of the midpoint between the

two driving wheels, and by the orientation angle
®(t) with respect to the inertial reference system

(1) a(t)=(x(t). y(t) (1))

YA

Fig.1. Three wheels mobile robotic scheme. XY
inertial reference system. X Y fixed reference
system.

The vehicle displacement is ideally subject to an
independent velocity constraint of the form

(2) xsin®d-ycos® =0

Assumption 1: The WMR displacement is supposed
to be pure rolling, without of any slipping.

Define by t, and 1, the torques provided by

independent actuators to the right and left wheel,
respectively. The vehicle is described by the
following dynamical model (Fierro and Lewis, 1997)

y Tyt
mx = —-myd + ———1 cos @
r

(3) my=mxd LI U Sing
r
. D
I(DZE(Tr_TI)

where m, I, D, r are the robot mass, moment of
inertia, distance between wheels and wheels radius,
respectively. The real mass of the WMR is supposed
time variable with bounded uncertainty

@) m™()=m"™ +Am(t) |am|<Am™

where the nominal mass m™™ is known. Due to the

time-varying mass, the moment of inertia is time
variable, also with bounded uncertainty
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D2
6) It)= m(t)T = 1M Al) [All <A™

Assumption 2: Even if the moment of inertia is
considered time-varying, the robotic mass is
supposed to be uniformly distributed all the time.

Define two parameters corresponding to the angular
displacement and linear displacement

D
21(t)r

@ x(t)=$

6) oft)=

respectively. Taking into account (4) and (5), the real
values of the above defined uncertain parameters are
time varying with upper bounded uncertainties

o (t): oM —A(x(t); |A(x| < Ao
A () ="M —A(t) |An] < anm
Remark 1: The uncertainties could be found not only
in the robotic mass and in the moment of inertia.

Other parameters, like as wheel radius, distance
between wheels may have uncertainties.

Let x e R the state vector, whose elements are

@ 7"

Xy =X,

Xy =Y, Xz=@

X5 =Y, Xg=®

Define the control input corresponding to angular
displacement

(10) ua=1r-7

and the control input corresponding to linear
displacement

(11) u =1, +7

With the above notations, it can write the state space
model of the WMR

X1:X4
Xz =Xg
X3 =Xg

(12) X4 =—X5Xg + A% (t)cos(@)u

X5 = X4Xg + 1" (t)sin(®)u

Xg = 0treal (t)uA

3. DISCRETE-TIME WMR DYNAMICAL MODEL

The state space representation of WMR from (12)
and the non-holonomic constraint from (2) are
discretized with the sampling period T, replacing the
derivative by a finite difference and using a zero
order hold for the control inputs.

Assumptions 3: The functions sin(®) and cos(®)
have slow variations inside of any simple interval.

The discrete-time state space dynamical model of
WMR, equivalent of (12), is

k being the Kk-th time interval where the
corresponding variable is evaluated (t=KkT ). The
discrete-time equivalent of nonholonomic constraint
(2) can be written as

(14) x4 (k)sin(x3(k))-xs (k)cos(x3 (k)= 0

Define e(k)e R® the vector of output errors having
the elements

15) e;(k)=x;(k)-x"" (k) i=1---6

where x!®" (k);

tracked.

i=1---,6 isthe trajectory to be

4. ON-LINE PARAMETER ESTIMATOR

Due to the time-varying of the WMR mass, the
control input parameters o(t)and A(t) are on-line

updated in order to be used in the corresponding
sliding mode control input. The robustness against
mass uncertainty will be assured by using the
maximum bounds of control input parameters for
angular and linear displacements to the attractiveness
conditions. As will be shown in the next sections the
attractiveness condition of the corresponding sliding
surface is satisfied only on certain interval and
outside of it, estimates of those parameters will be
used to compute the control input. Moreover, in
discrete-time, the sliding conditions are satisfied with
some approximation and only when the system is
inside of sliding sector or in the neighborhood of
sliding surface, the parameter updating law can
provide convergent estimates.
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Let Sa(k) and S_ (k) be two sliding surfaces

corresponding to the control input for angular and
linear displacement, respectively. The on-line version
of least squares method is used as parameter updating
law.

The control input for angular displacement has two
terms: the first one, denoted compensation part
comp
Ua
the second one denoted sliding mode partu$" (k),

corresponds to system evolution inside of sliding
surface neighborhood. The whole control input for
angular displacement is

(k) has to compensate the rotational dynamic;

(16) ua(k)=uRX™(k)+uR" (k)

The expressions and the steps for getting them, for
both components of the angular displacement control
input, will be provided in the next section.

If the estimated value for angular displacement
control input parameters has the expression

17 a(k)=a™ -Ad(k)

then the next sequence, corresponding to recursive
least squares method (Ljung, 1999; Stoica and
Ahgren, 2002) can be used to provide an estimation
of the uncertainty scalar term Ao(k) at the k-th step

PAa (k _l)uA(k _l)
L+ [ua (k-2 Paq (k1)

(19) P (K) = Paq (k=1)~ L aq (K)u a (k=P (k1)

(18) Ly, (k)=

Ad(k-1up(k-1)
(20) Ad(k)=Ad(k—1)+ Ly | +a™Mu"(k-1)
Sa (k)

T2

Since just one parameter is estimated, the gain
Laq(k)and the covarianceP,, (k) are scalars,

updated following (18) and (19), respectively. The
expression of the updating law for Aa(k) will be

more explained later.

Concerning the linear displacement control input
parameter, the same updating law is used

1) A(k)=A"" — Ax(Kk)

Par (K—2u (k1)
1+ [up (k-1)]* Py (k-12)

(23) Py, (k) =Py (K=1)— L pp (K)u  (K=1)P 5, (k—1)

(22) Ly (k)=

Ta(k-1uy (k-1)
(24) A(K) = AMK =1)+ L 5y, (K) + 2"y (k-1)
+8¢(k)-3 (k)

where S, (k) will be defined later and L, (k),
P (k) have the same meaning as previously.

Remark 2: To both parameter updating laws, (20) and
(24), the expression in brackets is valid when the
system is in the neighborhood of the corresponding
sliding surface.

5. CONTROL INPUT FOR ANGULAR
DISPLACEMENT

In order to design the control input for angular
displacement, the following sliding surface has been
chosen

(25) Sa(k)=A(k+1)-pA(k)=0

where pe(-1 1) and

26) A(k)=x5(k)- arctg[

<k>—azez<k—1)]

Xt (k)-81e1 (k1)

with 89,3, e(o %) The dynamics of sliding

surface is given by p and by the position
errors,e;and e, . If is taken into account the non-

holonomic constraint corresponding to the reference
trajectory

ref
@n xF(k)= arctan[ X5 (k)J

Xzef (k)

then the angular error e5(k) vanish when e;(k),
e, (k) tend to zero.

Remark 3: The sliding surface defined in (25) has
been chosen such as whenever a sliding mode is
achieved on it ande;(k),e,(k) vanish then the

orientation @ angle tends to its reference value.

The following attractiveness condition (Furuta, 1990;
Yu and Xu, 2002) has been considered for computing
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the control input, which assures an approximate
sliding mode on the surface (25)

(28) Sa(k)ASA(k+1)< —%ASA(kJrl)
where

Salk+1)=A(k+2)-pA(k+1)

X2 (k+2)-5,e, (k+1)
Xaef (k+ 2)—8161('( +1)

=x3(k+2)- arctg{
(29)

- p[x3(k +1)- arctg[ Xiff((iil)_Szez (k)ﬂ

(30) ASA(k+1)=Sa(k+1)-Sa (k)

If for the compensation part of the control input is
chosen the expression

ug?mp (k) _ (Tzanom )‘1

(31)

arcty X2 (k+2)-5,e,(k+1)
. Xaef (k+2)—81el(k+1)
—x3(k+1)-Txg(k)-pA(k +1)

then, after replacing (16), (25) , (26) and (29) in (30)
and some calculus manipulations, one obtains

ASa (k+1)=T2 (™™ - Aa(k)lM (k)
(32)
+ Aalku®™ (k)-Sa (K)

With (29) and (32), the attractiveness condition (28)
becomes

T2 [a nom _ Aa(k)]z [u Zm (k)]z

(33) +2T2[mom —Aa(k)]m(kju;m (k)(

o]

* 52w <o

With the upper bound of the angular displacement
uncertainty, from (8), the above second degree
inequality can be written as

T2 (k)R [ ()|

-|-2 [anom — Ao Max ]2 [usAm (k)]z

(34) +2T12 [a”"m — Aa ™™ ]Aamax‘u;m (kj

ue™ (k)

2 2 2
12 [pamex P lacom i[5z (0] <o
as well as in the equivalent form

((Xnom _ Ao, Max Juim (kX 2
35 T2
+ 8au 2™ (i)

If u\" (k)> 0 then (35) is equivalent with

0<T2(anom — Ag,Max Zm (k)

(36)
<=T28a™*|u 2™ (|45 (k)
If
37) |SA (kX o Ao M u'cof)mp (q
T2

then, form (36), the sliding mode part of the control
input can be expressed as

Sa(k)
T2

max
—Aa

u™ (k)

nom _ 5, max

38) u"(k)<
o

When u}"(k)<0, the inequality (35) is equivalent
with
0<_T2(anom — Ag,Max Zm(k)

(39)
+T2a0™ 2™ (k)| -[s 5 K)
from where
SAgk) _ Ag X u;omp(kj
sm T
(40) uy"(k)>- o

Remark 4: The both expressions of the sliding mode
component, (38) and (40), can be written by a single
one

uge™ (i)

o NOM _ Ao Max

sA (k)‘ — Ag,MaX
T2

41) uX(k)=pa

where pa e(-1 1).
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When

Balkl

< Ag MaX
T2

(42)

uw™ (k)

the attractiveness condition (28) can not be satisfied.
In this situation the sliding mode part of the control
input can still be computed by using estimates or the
corresponding parameter Ac.. The recursive least
square method used to compute Ad , given by (18),
(19) and (20), is convergent only when the system
evolutes in the neighborhood of sliding surface.
Therefore, when the system evolutes in a
neighborhood of sliding surface an approximate
sliding mode condition is satisfied

Salk+1)

@) =550

The above condition is used to compute the sliding
mode part of the control input for angular
displacement. The relationship (43) is equivalent
with

(44) 0™~ Aa (k)b (k) + AG(K )™ (k) ~ 0

from where can be expressed

AG(kJu ™ (k)

45 kK)=———A2
45) uy(k)= o A3l

Remark 5: With the relationship (44), can be better
shown the original expression of the updating law
for Aa

Aa(k)= Aa(k-1)
[orom — ad(k -2)ism (k1) )

6. CONTROL INPUT FOR LINEAR
DISPLACEMET

The same steps as to control input for angular
displacement will be followed to design a sliding
mode control law for linear displacement.

The following sliding surface has been chosen

10

L (k)= Ixa (<) +[xs ()

(47) \/[ (= 1] [x“’f 82e1(k—1)]2

Startlng with the third equation from the state model
(13), by using the trigonometric equality

tg(Tx g (k)) = ta(x3 (k +1)-x3(k))

_ tg(xz(k+1))-tg(x3(k))

- Letg(xa(k +)tg(xs (k)

(48)

and the non-holonomic constraint (14), the following
equality holds

xs(k+1) xs(k)

Xq(k+1) x4(k)
)
)

49) tg(Txg(k))=

4
X5(k+1)X5 k
4

(
(kg (k

Moreover, by introducing the expressions of the state
variables from state model (13) in (49) and using the
constraint (14), the equality (49) becomes

9(Txe ( {\/ [x4(k
(50)

=Txg( k)\/[x4

Define also, the quantity

51 (0) = [eosTxg ()™ bxa () + x5 (<)

(51)

s ~Talih ()

+[X5 )]2

2
\/[ " (i +1)— 814 (K) ] [X“’f k+1)—62e2(k)]
The sliding motion on the surface (47) concerns the
reduced order system of the robotic model

X1(k+1) = (k) + Tx4(K)
(52) Xa(k+1) = X5 (k) + Txs(k)
Xa(k+1) = Xq(k) = Txg(k)xg (k) + TA(k)cosxa(k)Jui (k)
X5 (K +1) = X5(K)+ Txg(k)xg (k) + TA(k)sin(x5(k))u, (k)
Remark 6: Due to the form of the reduced order

system, the control input for linear displacement has
only one the sliding mode term

The same attractiveness condition (Furuta, 1990) has
been considered for computing the linear
displacement control input which assures an
approximate sliding mode on the surface (47)
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1 Using (47) and (61), the attractiveness condition (53)
(53) S (k)AS (k+1)<—=AS (k+1) leads to the inequality

(54) AS, (k+1)=S, (k+1)-S, (k) %M(kﬂz
(55)

su(k+1) = [xa(k+ I + [xs(k + P -

with

oM —arr 2

(62) +2 cos(Txs (] S (K (k)

V" (1) ()F + " (1))

~ 2 2
+(S (k)| =S (k)" <0
Due to the sliding evolution on (25), the angular [ L( )] [ L( )]
X3(k) tends to hold the following value With the upper bound of the linear displacement

(56) uncertainty from (8), the above second degree

o s(Tx3 (k)) inequality can be written as
ref (k) 61e1(k 1) 310M _ Ap Max ‘ 2
i ; pareaf] -
[ (k) 6191 k 1] [X 6291('(—1)]
S'r'(TX3( )) !xnom _ A Mex "_l'
(57) _ XE (k)-31e9(k-1) 63) +2 [cos(Txg (K)) ‘SL )"U L (k)
\/ e () -enen (k) ()42
then, by using (49), can be obtained the expression + [§,_ (k)]2 ~[sL (K)? <0
[X 4 (kK+DJ? +[x5 (k+1)]2 and in an equivalent form
2
(58) Z[ x4 (W +[xs (K] —T(Xnom—M(k))uL(k)} \nom _ ,, max - 2
|U L (k) + ‘SL (kx
(64) | |cos(Txg(k))

[ 6 <Dl |

~[SLk) <0
Finally, the relationship (58) can be written as

If u™(k)> 0 then (63) is equivalent with
N k)~ 0then (69) s

(59) 2 0. !)Lnom _ ppmax "_I' . L(k)
el sl T~ ) o)
B 2 < _‘SL (k)( +[sLP
eod Tl

If
With above relation and (50), (54) and (53) become

66) | (k)> \éL (k)(
SL(k+1)= §L(k)
(60) then, form (65), the sliding control input for linear

displacement can be expressed as
~Ticos(Txg (k) (™ - an (k) (k)

a5, (+1)= 45, (k)5 () 6 ubmpy—HOPl
(61) T{cos(Tx (k)] (x — A )

= Tlcos(Tx g (k) - (k”om - Ak(k))J L (k) where p, (0 1). When

11
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68) |s. (k)< \sL (k)(
the attractiveness condition (52) can not be satisfied.
In this situation the control input can still be

computed by using estimates of the corresponding
uncertain parameter A .

Remark 7: The recursive least square method used to

compute AA , given by (22), (23) and (24) is
convergent only when the system evolutes in the
neighbourhood of sliding surface. Therefore, when
the system evolutes in a neighbourhood of sliding
surface the approximate sliding mode condition is
satisfied

69) S, (k+1)=
The above condition is used to compute the sliding

control input for linear displacement. The
relationship (69) is equivalent with

(70) ToodTx ()] ™ - A(K)lu, ()+3, (k) =0
from where the control input can be expressed

S (k)
Tlcos(Txg (k) 1(%”0”‘ Ak ))

(71) up(k)=-

Remark 8: Due to relationship (70), can be better
shown where comes from the updating expression of
A) . The original expression is

A(K)= Ak -1)
(72)
TleosTxg(k-)| [x”°m —Ak-1)
+ LM(k
UL(k—1)+§L(k—l)—SL(k)
When the system evolutes in sliding mode on the
surface (47), the followings hold
(73) x4(k)= X" (k)- 8101 (k-1)

(74) x5(k)=xE" (k)-8e1(k~1)

and the output tracking error dynamics associated to
the reduced order system can be expressed as

(75) ey(k)=eq(k)-3;,Tey (k1)

(76) e, (k)=ep(k)-8,Te,(k-1)

12

For 81,05 € [0 %) , the dynamics errors from

(75) and (76) are stable. Hence, the reduced order
error system is bounded during sliding mode
evolution on the surface (47).

Remark 9: The reduced order system (52) may be
considered after an exact sliding mode evolution on
the surface (25).

7. CLOSED LOOP SIMULATION RESULTS

For testing the proposed discrete-time sliding mode
adaptive controller, Scout three wheels mobile robot
has been chosen. The parameters of dynamical model
(3) are: m=80kg, D=0.34m, r=0.1m, 1=2,312kgm?,
T=0.3s. For navigation and obstacle avoidance Scout
robot has an odometric system based on incremental
encoders and a sonar system based on ultrasounds.
For driving each of two wheels is actuated by a DC
motor. A time varying mass has been considered to
the nominal one. The moment of inertia has been
computed assuming the mass uniformly distributed.
A linear and a constant reference trajectory have
been chosen for linear and angular displacement,
respectively. A linear time varying mass has been
considered additionally to the nominal one.
Therefore, during of simulation time the robotic real
mass has been increased from 80kg to 110kg. The
closed loop structure, shown in the figure 2, has been

tested by simulation. The simulation, shown in
figures 3 and 4, has been done for
Aa™* =04 AN =0.033, starting from the
followings initial conditions: x;(0)=0, x,(0)=1,
x3(0)=—-n/4, x4(0)=0, x5(0)=0,
x(0)=0.The following values have been chosen
for the constants: pn=0.001, p_=pa =099,

8, =58, =0.99, Py, (0)=P,, (0)=10.

Reference: position and
angular coordinates, linear
and angular velocities

L
autput errors
> three wheels mobile +
_ ., comp s rabaot with variable
Up = uA +Ua " mass
on-line estimator of
adagiive sliding -l inear displacement |
mode controller for controller parameter
linear displacement - o
il wn EEE Y
on-line estimator of
adaptive sliding L angular di went Lo
mode contraller for controller | ‘
angular displacament | g N N
- = ™M A




THE ANNALS OF "DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE 111, 2004 ISSN 1221-454X

Fig. 2. Closed loop block schema of sliding mode
adaptive wheeled mobile robot control

N
‘0 10 X 1] 0 10 Eil Ell
1[zec] 1[sec]
real mass (blue), estimated mass(red)

angular dizgplacamant contrel input

i ) (oo OO S

Fig. 3. Angular and positions errors, control inputs,
real and estimated mass.

L
o L] 10 1% .1} ® E1)
1[sec]

angular reference(blug), robot agular position(red)

Fig. 4. Linear and angular trajectories tracking.

8. CONCLUSIONS

A discrete-time sliding mode adaptive controller for
trajectory tracking three wheels mobile robots has
presented in this paper. The time-varying mass
dynamical state space model has undertaken in order
to design the controller. Even if as model uncertainty
only the robotic mass has been considered, the
proposed controller assures closed loop robustness to
a wide typology of model uncertainties and external
disturbances. Two components of the sliding mode
adaptive controller have been designed, for angular
and linear displacement, respectively. The robustness
is guaranteed by sliding mode controller and by an
adaptive parameter identification scheme. Controller
parameters, on-line updated, assure an approximate
sliding mode evolution even if the attractiveness
condition is not satisfied and, moreover contribute to
an increased robustness. Closed loop simulations
with three wheels Scout mobile robot have presented.
Discrete time dynamical model and controller design
lead to an easy real-time implementation.
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