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1. INTRODUCTION

Numerical algorithms are increasingly used to model,
simulate, and optimize industrial, economical, and bi-
ological processes. Human-made systems are heav-
ily dependent on computer technology and auto-
matic control concepts and algorithms. Control sys-
tems analysis and design procedures often require
the solution of general or special linear or quadratic
matrix equations. Examples are: invariant or deflat-
ing subspaces of matrices or matrix pairs, block-
diagonalization and computation of matrix functions,
controllability and observability Gramians, Hankel
singular values, model and controller reduction, New-
ton-type algorithms for linear-quadratic optimization,
condition estimation for eigenvalue problems and lin-
ear or quadratic matrix equations, etc. There is a huge
amount of theoretical results available both in systems
and control, as well as in the linear algebra litera-
ture devoted to matrix equations and related topics.
There are also many associated software implemen-
tations, both commercial (e.g., inMATLAB 2 (Math-
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Works, 1998, 1999)), copyrighted freeware (e.g., in
the SLICOT Library (Benneret al., 1999; Van Huf-
fel and Sima, 2002; Van Huffelet al., 2004)), or in
the public domain (e.g., in Scilab (Gomez, 1999)).
The reliability, efficiency, and functionality of various
solvers differ significantly from package to package.

Although numerical algorithms for linear matrix equa-
tions in control theory were published since 1960, this
is still a very hot research topic. The challenge for
solving larger and larger equations has not yet been
fully answered. The proposed techniques are usually
not general enough. The comparative studies of the
numerical techniques are also limited. It is the purpose
of this paper to investigate the performances of several
powerful solvers for linear matrix equations.

The capabilities and limitations of the general-pur-
pose solvers available in the SLICOT Library and
MATLAB are studied, in comparison with some spe-
cialized solvers. SLICOT Library (SubroutineL ibrary
In COntrol Theory) provides Fortran 77 implemen-
tations of many numerical algorithms in systems
and control theory, as well as standardized inter-
faces (gateways) toMATLAB and Scilab. Built around
a nucleus of basic numerical linear algebra sub-
routines from the state-of-the-art software packages
LAPACK (Andersonet al., 1999), BLAS (Dongarra



et al., 1988, 1990; Lawsonet al., 1979), and their
counterparts for distributed memory computers, e.g.,
ScaLAPACK and PBLAS, this library enables to ex-
ploit the potential of modern high-performance com-
puter architectures. The SLICOT solvers for linear
matrix equations offer improved efficiency, reliability,
and functionality over the corresponding solvers in
other computer-aided control system design packages.

2. SLICOT LINEAR MATRIX EQUATION
SOLVERS CAPABILITIES

The extended functionality of SLICOT solvers is
partly illustrated by the following list of equations
solvable by SLICOT codes (Sima and Benner, 2003;
Slowik et al., 2004).

• Continuous- and discrete-time Sylvester equations:

op(A) X ±X op(B) = σC; (1)

op(A) X op(B) ±X = σC; (2)

• Continuous- and discrete-time Lyapunov equations:

op(A) T X + X op(A) = σC; (3)

op(A) T X op(A) −X = σC; (4)

• Stable non-negative definite continuous- and discrete-
time Lyapunov equations:

op(A) T X + X op(A) =−σ2 op(D) T op(D) ; (5)

op(A) T X op(A) −X =−σ2 op(D) T op(D) ; (6)

• Generalized Sylvester equation:

AX − Y B = σG,

EX − Y F = σH; (7)

or the “transposed” equation

AT X + ET Y = σG,

XBT + Y FT =−σH; (8)

• Generalized continuous- and discrete-time Lya-
punov equations:

op(A) T X op(E) + op(E) T X op(A) = σC; (9)

op(A) T X op(A) − op(E) T X op(E) = σC; (10)

• Generalized stable continuous- and discrete-time
Lyapunov equations:

op(A) T X op(E) + op(E) T X op(A) =

− σ2 op(D) T op(D) ; (11)

op(A) T X op(A) − op(E) T X op(E) =

− σ2 op(D) T op(D) ; (12)

where the notation op(M) denotes either the matrix
M , or its transpose,MT , A, B, op(D) , E, andF ,
are n × n, m × m, m × n, n × n, and m × m

given matrices, respectively,C, G, andH are given
matrices of appropriate dimensions,X and Y are
unknown matrices of appropriate dimensions, andσ
is a scaling factor, usually equal to one, but possibly
set less than one, in order to prevent overflow in the
solution matrix.

Let E(D,U) = R be a shorthand notation for any of
the above equations, whereE , D, U , andR denote
the corresponding equation formula, data, unknowns,
and right hand side term, respectively. For general
matrices, the solution is obtained by atransformation
method(see, e.g., (Sima, 1996, page 144)). Specif-
ically, the dataD are transformed to some simpler
forms, D̃ (usually corresponding to the real Schur
form (RSF) ofA, or generalized RSF of a matrix pair),
the right hand side term is transformed accordingly to
R̃, the reduced equation, E(D̃, Ũ) = R̃, is solved in
Ũ , and finally, the solution of the original equation is
recovered from̃U .

The methods implemented in SLICOT are basically
the following: the Schur method (also known as
Bartels–Stewart method) (Bartels and Stewart, 1972)
for Sylvester equations (forA, B general, or in RSF),
or Lyapunov equations (forA general, or in RSF),
with the variant from (Barraud, 1977) for the discrete-
time case; the Hessenberg-Schur method in (Golub
et al., 1979) for standard Sylvester equations, i.e.,
with op(M) = M (for A, B general, or at least
one of A or B in RSF, and the other one in Hes-
senberg or Schur form, both either upper or lower);
Hammarling’s variant (Hammarling, 1982) of the
Bartels–Stewart method for stable Lyapunov equa-
tions; and extensions of the above methods for gen-
eralized Sylvester (K̊agstr̈om and Poromaa, 1996) and
Lyapunov equations (Penzl, 1998).

The ability to work with the op(·) operator is impor-
tant in many control analysis and design problems.
For instance, the controllability Gramians can be de-
fined as solutions of stable Lyapunov equations with
op(A) = AT , while observability Gramians can be
defined as solutions of stable Lyapunov equations with
op(A) = A. When both controllability and observ-
ability Gramians are needed (e.g., in model reduction
computations), then the same real Schur form ofA can
be used by a solver able to cope with op(·) , and this
significantly improves the efficiency.

The solvers for stable Lyapunov equations directly
compute the Cholesky factorU of the solution matrix
X, i.e.,X = op(U) T op(U) . Whenever feasible, the
use of the stable solvers instead of the general ones
is to be preferred, for several reasons, including the
following: • the matrix product op(D) T op(D) need
not be computed;• definiteness ofX is guaranteed.
Moreover, often the Cholesky factors themselves are
actually needed, e.g., for model reduction or for com-
puting the Hankel singular values of the system.

When solving any matrix equation, it is useful to
have estimates of theproblem conditioningand of the



solution accuracy, e.g.,error bounds. Such measures
are returned by several routines of the SLICOT Li-
brary (Simaet al., 2000), allowing to assess the quality
of the computed solution. This illustrates the increased
reliability and functionality of the software available
in SLICOT. In contrast, many other control packages
could merely compute the solution residual, which can
be misleading if the problem is ill-conditioned.

3. SPECIALIZED LINEAR MATRIX EQUATION
SOLVERS

The results in (Sima and Benner, 2003; Slowiket
al., 2004) and other papers, as well as those included
below, show that the high-levelMATLAB interfaces
to the SLICOT codes offer improved efficiency (at
comparable accuracy) over the existing standard soft-
ware tools. However, the SLICOT solvers do have
some limitations, mainly coming from their generality.
These solvers cannot compete in terms of efficiency
with specialized solvers designed for specific classes
of large-scale problems.

Two types of specialized solvers are considered in this
investigation: iterative algorithms for stable Lyapunov
equations with low rank solutions, and recursive algo-
rithms for quasi-triangular linear matrix equations.

3.1 Iterative algorithms for stable, low rank Lyapunov
equations

The approach for solving large-scale Lyapunov equa-
tions implemented in theMATLAB package LYAPACK
(LYApunov PACKage) (Penzl, 2000) can be applied
to structured (or sparse) stable continuous-time equa-
tions of the form

FX + XFT = −GGT , (13)

whereF ∈ IRn×n and G ∈ IRn×m. In many ap-
plications, for instance, model reduction or algebraic
Riccati equations, it is sufficient to obtain a factoriza-
tion of the solution matrixX, X = ZZT . For solving
Riccati equations, it is assumed that the matrixF has
the form F = A − BKT , whereA and B are the
matrices of the system dynamics equation, andKT is
the gain matrix of the optimal regulator.

Besides the limitations imposed by the form of the
equation (13) and stability hypothesis, it is also as-
sumed that the number of columnsm is small in
comparison withn, m ¿ n, and that the matrixF is
structured so that efficient solution of linear systems
with coefficient matricesF − pIn, wherep ∈ IC, as
well as efficient computation of matrix-vector prod-
ucts are possible. Moreover, the ordern should be
large enough, for instance,n > 500, and the equations
be sufficiently well-conditioned.

The LYAPACK approach, implemented in the func-
tion lp lradi , uses thelow rank Cholesky fac-
tor technique, in combination withalternate direc-
tions method, abbreviated as LRCF-ADI (Low Rank
Cholesky Factor Alternate Directions Iterations). The
efficiency of LRCF-ADI depends on certain ADIshift
parameters, computed by an heuristic algorithm. The
low rank Cholesky factor technique is based on the
observation that in many problems (13) withm ¿ n,
the eigenvalues of the solution matrixX decay very
fast, which suggests the possible existence of very
accurate approximations of rank much smaller thann.
The ADI iteration for Lyapunov equation (13) is given
by

(F + piIn)Xi−1/2 =−GGT −Xi−1(FT − piIn),

(F + p̄iIn)XT
i =−GGT −XT

i−1/2(F
T − p̄iIn),

for i = 1, 2, . . ., whereX0 = 0. Each iteration in-
volves matrix-vector products and solutions of sparse
linear systems. The convergence is accelerated using
the parameterspi. This method generates a sequence
of matricesXi which converges often very fast to the
solution, provided that the ADI shift parameters,pi,
are chosen in a (sub)optimal way. The efficient im-
plementation of the ADI method replaces the iterates
Xi by their Cholesky factors,Xi = ZiZ

T
i . Let Pj

be a real negative number, or a pair of complex con-
jugated numbers with negative real part. If the matrix
Xi = ZiZ

T
i is generated by aproper set of param-

eters{ p1, p2, . . . , pi } = {P1,P2, . . . ,Pi }, thenXi

is a real matrix. The problem of finding (sub)optimal
ADI parameters,P = {P1,P2, . . . ,P` }, is strongly
connected to the rational minimax problem applied to
the function

sP(t) =
|(t− p1) · · · · · (t− p`)|
|(t + p1) · · · · · (t + p`)| .

This problem is stated asminP maxt∈σ(F ) sP(t),
whereσ(F ) denotes the spectrum of the matrixF . The
implementation of the heuristic technique first gener-
ates a discrete set, which approximates the spectrum,
using a pair of Arnoldi processes. The first process,
acting on the matrixF , producesk+ Ritz valueswhich
tend to approximate the eigenvalues farest from the
origin. The second process, acting on the matrixF−1,
producesk− Ritz values, approximations of the eigen-
values close to the origin. The set of shift parameters
is then chosen as a subset of the Ritz values, as an
heuristic, suboptimal solution of the resulting discrete
optimization problem.

The use of the LYAPACK package implies that the
user writes the specific routines performing operations
with matricesF or A, of the form

Y ←−AY or Y ←− AT Y,

Y ←−A−1Y or Y ←− A−T Y,

Y ←− (A + piIn)−1Y or Y ←− (AT + piIn)−1Y,



whereY ∈ ICn×t, t ¿ n.

3.2 Recursive algorithms for quasi-triangular linear
matrix equations

An approach (Jonsson and Kågstr̈om, 2002a, b) which
can be applied to all classes of linear matrix equations
with quasi-triangular matrices is based on the use of
recursive algorithms. The basic idea is to recursively
decompose the quasi-triangular matrices in blocks un-
til the obtained equations are small enough for being
solved in the very fast cache memory, and to use some
“superscalar” computational kernels for equations of
small dimensions. The sizes of the blocks are vari-
able, and this fact enables their automatic adaptation
to the computational platform used, and the efficient
exploitation of the existing memory hierarchies on
modern computing machines.

To illustrate, consider the case of a continuous-time
Sylvester equation,

AX −XB = C, (14)

whereA andB arem×m andn×n matrices, respec-
tively, either upper triangular or in real Schur form.
Depending on the values ofm andn, three alternative
recursive decompositionscan be considered. One such
alternative is illustrated below.

If 1 ≤ n ≤ m/2, A is decomposed by rows and
columns, andC is decomposed by rows:[

A11 A12

0 A22

] [
X1

X2

]
−

[
X1

X2

]
B =

[
C1

C2

]
, (15)

or, equivalently,

A11X1 −X1B = C1 −A12X2,

A22X2 −X2B = C2. (16)

Two triangular Sylvester equations have been ob-
tained. The second equation is solved inX2, and after
a GEMM-type update,C1 ← C1 − A12X2, the first
Sylvester equation is solved.

There are three levels of solvers for linear matrix
equations. The recursive block solvers are destined
to the user. Each of these solvers calls asub-system
block solver, when the dimensionsm and n of the
current subproblem in the recursive decomposition
are smaller than a certain block size,blks . Finally,
each sub-system solver calls asuperscalar kernelfor
solving equations withm,n ≤ 4. Besides the ad-
vantageous use of the memory hierarchies, the re-
cursive approach allows to consider various forms of
parallelism. The major disadvantage of the recursive
solvers is that they merely solve “reduced” equations.
The initial reduction to the (generalized) real Schur
form is not covered. The codes are implemented in the
RECSY library, and wrappers to the SLICOT solvers
are provided, so that general equations can be solved,
and condition estimates can be computed.

4. NUMERICAL RESULTS

Some typical results are graphically illustrated in the
figures below. The calculations have been done on a
PC computer with a 500 MHz Intel processor, 128 Mb
memory and the relative machine precisionε = 2.22×
10−16, using Compaq Visual Fortran V6.5, optimized
BLAS provided by MATLAB , and MATLAB 6.5.1
(R13).

One application has a band matrixA ∈ IRn×n with
5 nonzero diagonals, obtained by discretization of a
partial differential equation, using finite differences
on an equidistant grid. The rows and columns ofA
are further permuted so that a matrix with an even
smaller bandwidth is obtained. (The resulting matrix
for order 1000 has only 4992 nonzero elements.) The
right-hand side matrix has the formBBT , where
B ∈ IRn. The data matrices have been generated by
the LYAPACK example codesfdm 2d matrix and
fdm 2d vector . The LYAPACK solverlp lradi
is faster than the SLICOT solversllyap for Lya-
punov equations of order higher than, say, 270 (and
much faster for larger orders);sllyap , in turn,
is 2–3 (or much more) times faster thanMATLAB

lyap . 3 But for problems of order smaller than 270,
lp lradi is slower (possibly much slower) than
sllyap . Note also that, besides the stability and
sparsity requirements,lp lradi also assumes some
additional conditions, such as: the solution matrix has
a small rank; the equation is quite well-conditioned;
the equation order is large enough.

Figures 1, 2 and 3 show the execution times for the
solverssllyap , lyap andlp lradi , in SLICOT,
MATLAB and LYAPACK, respectively, in the ranges
n ≤ 225, 196 ≤ n ≤ 400, and400 ≤ n ≤ 1024,
as well as their ratios, takingsllyap as a reference.
The equations with orders in these ranges could be
considered as “small”, “medium”, and “large”, respec-
tively, for the computer used for their solution. The
results show that SLICOT routines always outperform
MATLAB calculations (for any order), and also spe-
cialized solvers, for problems of small size. It should
be mentioned that the accuracy is comparable for all
these solvers and all equations solved. The results also
show the superiority of thelp lradi solver over
sllyap and, especially,lyap , when solving Lya-
punov equations of order larger than 300. It should be,
however, mentioned that, in contrast with(sl)lyap ,
lp lradi is not a general solver. Its high efficiency
is due to the use of the sparse structure of the matrixA
in operations likeAb or A−1b, whereb is a vector.

Figures 4 and 5 present the execution times and their
ratios to those forsllyap when calling the recursive
algorithms for another application. In this case, the

3 The latestlyap version included inMATLAB 7, released in
June 2004, is not considered, since it is based on the corresponding
SLICOT routines; this version could also be about 20 % slower than
sllyap .
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Fig. 1. Application 1,n ≤ 225. Top: The execution
times. Bottom: The speed-up factors.
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Fig. 2. Application 1,196 ≤ n ≤ 400. Top: The
execution times. Bottom: The speed-up factors.

matrix A has been obtained starting from a Jordan
form, and applying an orthogonal similarity trans-
formation, which filled-up the matrix with nonzero
elements and altered its condition number. Func-
tion lp lradi becomes more efficient thansllyap
for n ≥ 150.

5. CONCLUSIONS

Various state-of-the-art, uni-processor linear matrix
equation solvers for automatic control computations
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Fig. 3. Application 1,400 ≤ n ≤ 1024. Top: The
execution times. Bottom: The speed-up factors.
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Fig. 4. Application 2,n ≤ 400, recursive algorithm.
Top: The execution times. Bottom: The speed-up
factors.

have been investigated and compared for various
problem sizes. The results confirm the natural ex-
pectation that general-purpose solvers, such as those
currently implemented in the SLICOT Library (and,
consequently, inMATLAB 7) cannot compete in ef-
ficiency, for large-scale problems, with specialized
solvers designed for certain problem classes. How-
ever, the SLICOT solvers are the most efficient ones
for small-size problems. Moreover, they are general
solvers and offer extended functionality and broad
computational abilities.
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algorithm. Top: The execution times. Bottom:
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