
THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2004 ISSN 1221-454X

ELECTROTEHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

VENDOR-INDEPENDENT DATABASE APPLICATIONS – AN
ARCHITECTURAL APPROACH

Octavian Paul Rotaru ** Marian Dobre ** Mircea Petrescu *
* Computer Science and Engineering Department, University “Politehnica” of

Bucharest, Romania
** On leave of absence from *, Currently at Amdocs Dev. Ltd., Limassol, Cyprus

Octavian.Rotaru@ACM.org, Marian.Dobre@amdocs.com, MirceaStelian@yahoo.com

Abstract: The ability to switch between different Database Management Systems
(DBMS) is a requirement for many database applications in which effort was invested
by many researchers. The main obstacle is the non-uniformity across vendors of the
SQL language, the de-facto standard in the industry. Also, an application that maps
between an object-oriented application and a relation database needs to be designed in a
proper way, in order to achieve the required level of performance and maintainability.
This paper presents, extends and further details the Vendor-Independent Database
Application (VIDA) framework, initially proposed by us in [9]. The proposed VIDA
architecture is described in-depth, based on our practice and experience in this field.
The design decisions are presented along with supporting arguments. The VIDA
architecture presented here aims to fully decouple the application both from the query
language and from the database access technology, providing a uniform view of the
database. The problems encountered, both during design and implementation, are
presented along with their solutions. Also, the available data access technologies and
languages are surveyed and their conformity with a standard is debated.

Keywords: database access layer, DBMS, design patterns, SQL standard, vendor-
independence.

1. INTRODUCTION

Ideally we would like applications to be able to use
each and every of the data sources required,
irrespective of their vendor, version and particular
constraints. Practically, it is very difficult to
implement a fully vendor-independent database
application. Usually, most of the database
applications intended to be vendor-independent are
finally strongly linked to the database engine that
was used during development. This happens due to
performance issues that cannot be solved without
using some vendor specific features, or because of
the insufficient analysis, design and development
time allocated.

In order to achieve vendor-independency, a database
independent data provider module is required to
assure a uniform way for connecting to, retrieving
from and saving information into the data source.
Implementing a database-independent data provider
brings into the picture the issue of choosing the
proper database access protocol for the application
being implemented. Even if such a data provider is
available on the shelf or can be implemented with a
reasonable effort, this does not solve all the
associated problems, as described below.

Structured Query Language (SQL) is the dominant
language for data retrieval and manipulation in
databases. An important issue related to its use in
VIDA is that there is no fully SQL standard
compliant database. Different vendors use a different
syntax for the same concept. The syntax of SELECT,
INSERT and UPDATE (part of DML – Data
Manipulation Language) is to a great extent similar,
but the Data Definition Language (DDL) statements
and joins have different syntax across platforms.

For most of the applications, sticking to the common
kernel of the SQL DML syntax and using an
independent data provider is a solution ensuring that
the application is database vendor independent.
However, in case of applications having special
requirements like for example to create temporary or
permanent tables, modify their structure or drop
them, join huge amounts of data that cannot be done
into the memory, the solution has to be extended in
order to also cover these aspects.

Fully decoupling the application from the database
by using a mediation layer along with the data
provider is in most of the cases the best solution, but
sometimes this proves to be not very easy to
implement. Using a class factory in order to obtain a

This paper was recommended for publication by Severin BUMBARU
86

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2004 ISSN 1221-454X

proper SQL object for the database to which the
application is connected is the design solution used in
our framework for VIDA. The above-mentioned SQL
object is actually a statement composition tool
customized for each and every database engine that
our framework supports. However, adding a new
DBMS to the list of the supported ones triggers the
recompilation of the mediation layer. Finding a
component based plug-and-play solution for
implementing the mediation layer is a future research
objective.

2. THE ANSI SQL STANDARD

Having a standard is beneficial for everyone. The
conformity with the standard gives to the users the
assurance that the product does what is supposed to
do. A utility or a tool designed compliant with the
standard will work on all the available DBMS,
irrespective of their vendor. Similarly, programmers
can become certified in the standard and not in a
vendor-specific implementation [10].

In 1989, American National Standard Institute
(ANSI) published the first SQL standard
specification, intended to make it independent of a
specific implementation or DBMS. Since then, the
SQL standard was twice revised in 1992 (SQL-2 or
SQL-92) and in 1999 (SQL-3 or SQL-99).

Up to this point everything looks right. There is a
standard, so why to worry? Just implement your
application according to the standard and it will be
vendor-independent. Looks obvious, isn’t it?
Unfortunately it is not, mainly because there is no
DBMS fully compliant with the SQL standard.
Various database manufacturers have taken
allowances with the ANSI/SQL standard to different
degrees in order to give their product a competitive
advantage and meet customer demands [10]. These
vendors interpret the standard in their own way,
using proprietary syntaxes in some cases and adding
new extra features. Every DBMS vendor wants to
differentiate its DBMS product and to have its own
SQL “savor”. Apart from supporting most of the
ANSI/SQL standard, there are always features,
enhancements or extensions that are available only
from individual vendors. Practically, the number of
SQL dialects equals the number of DBMS vendors.

Using these additions to the standard in an
application is on the long run a very bad decision.
The portability is gone, unless the application code is
changed in order to come back to the standard, and
the quality suffers as well. Even though these extra
features seam to be useful and to shorten the
development time, their use is strongly linking the
application to the database vendor.

Considering the above-mentioned facts, a question
arises: is SQL a standard in this moment? Most

probably not, or not in the way it was intended.
Actually, SQL evolved from a standard to general
guidelines, most of the database manufacturers
considering the compliance with it as secondary. The
main goal of the vendors is to get closer to the SQL
standard compliance without sacrificing speed or
reliability. The non-standard features are considered
as greatly increasing the usability of their products.
Some famous examples in this sense are the Oracle
plus (+) syntax for outer joins and the TOP syntax
available in the Microsoft products. Even if they are
shorter and easier to use than the standard notation,
they still remain a deviation from the SQL standard.

If an application using only DML statements can be
vendor-independent by simply avoiding the usage of
non-standard features, this does not hold in the case
of an application issuing also DDL statements. If the
syntax for CREATE and DROP TABLE is usually
the same, excepting the data types, the syntax of
ALTER TABLE is usually different from one vendor
to another.

In the recent years, more and more database
manufacturers make steps towards compliance with
the SQL-92 and SQL-99 standard. Even so, there are
still many things to be done until it will be possible to
easily change the database used by any application,
no matter the way it was implemented.

3. CHOOSING A DATABASE ACCESS
PROTOCOL

General database access protocols were designed so
that the detailed information about a particular
database engine can be “snapped in” a common
framework without worrying about the
implementation’s specifics [6].

Open Database Connectivity (ODBC) is definitely
the most used database access protocol. Even if
ODBC is slower than some newer technologies like
OLE-DB and ADO, it has the widest support of both
databases and applications. OLE-DB is probably the
highest performance protocol for accessing a
database, but it is limited to Windows platforms.
JDBC, released by Sun shortly after Java, is limited
to Java applications. Hence, ODBC is the only
platform and language independent generic database
access protocol available.

Due to the above-mentioned reasons, our choice was
to use ODBC as the generic database access protocol
for our VIDA framework. However, in order to
decouple the application from the data provider, the
protocol-dependent connectivity details should be
accessed through an abstract interface. In this way,
the database access protocol can be changed at any
moment by simply adding a new implementation for
it. Only one layer (component of the application) is
affected.

87

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2004 ISSN 1221-454X

Creating an abstract protocol-independent
connectivity layer is useful in terms of reusability. It
can be used by many applications irrespective of the
database access protocol, and therefore we identified
it as an important component of our vendor-
independent database application architecture.

More details about the framework architecture are
provided in Section 7 of this paper.

4. HANDLING DDL STATEMENTS

DDL is the biggest issue to be addressed when
speaking about applications able to switch from a
DBMS to another. This is mainly because the high
diversity of DDL SQL dialects offered by various
vendors.

ODBC defines its own data types, which are used
both for data definition and data manipulation. The
database also has its own native types and therefore a
mapping is needed.

The solution provided by ODBC to this issue is the
SQLGetTypeInfo function used to retrieve the data
type information. This is not solving the problem
completely, because the relation between ODBC
types and database types is not bijective.

In case there is no corresponding native data type for
an ODBC one, a solution is to check for all the
compatible ODBC types if they have a native
correspondent. The search ends if a mapping is found
or there is no unchecked possible compatibility left.

Finding the mapping needs to be done through a
module that will try all the similar types based on a
compatibility diagram. A state transition diagram for
ODBC data types compatibility is shown in Figure 1.

Fig.1. ODBC Data Types Compatibility State

Transition Diagram

For example, in case a certain database does not have
a correspondent for SQL_NUMERIC, the system
will try to see if any of the compatible types has a
native correspondent. In this case, the compatible
types are SQL_DECIMAL, SQL_INTEGER and
SQL_SMALLINT. In case none of these numerical
equivalences is successful, a SQL_CHAR conversion
will also be tested.

As shown in Figure 1, visiting all the possible states
(nodes), starting from the state corresponding to the
ODBC type, for which compatibilities are searched,
enables to find all its compatibilities. For every
compatible ODBC type SQLGetTypeInfo is used in
order to check if a corresponding native database
type exists.

Since the state transition diagram in Figure 1 can be
visited starting from any of its states, there is no
explicit start state defined.

The ODBC data types compatibility was initially
implemented as a matrix of Booleans. The ODBC
data types were placed on both axes, and a true value
at the intersection of two types used to indicate a
possible conversion.

In order to always have the best conversion possible,
an extra parameter was used for ODBC type
conversions: priority. Therefore, the initial solution
using a conversion matrix was discarded and the
ODBC mapping was implemented using a priority
list, as depicted in Figure 2.

Finding the best existent compatible mapping for an
ODBC type is done by visiting the nodes of its
associated linked list until an ODBC type having a
native database type mapping is found or the end of
the list is reached.

Reaching the end of list will trigger a type
incompatibility exception. However, our ODBC data
types compatibility tests shows that such a situation
is very improbable to appear. We never encountered
such a situation while testing on different version of
MS Access, MS SQL Server, Oracle, Sybase and
Informix.

Fig.2. ODBC Data Types Conversion Priority

Diagram

88

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2004 ISSN 1221-454X

5. THE STATEMENT COMPOSER – WHY AND
HOW

As discussed in section 2, it is not possible to rely on
the SQL standard in order to achieve database
platform independence. This affects even the DML
statements that are usually the most generic of all.

The solution proposed by our framework is a SQL
statement composition module able to create the
database specific statement based on meta-data
provided by the client application or the signature of
the database obtained through the database access
protocol. In this way the client application is
potentially isolated not only from the SQL dialect,
but also from the query language. Since the
statements are composed by the framework and not
by the client application, the client is not at all aware
of the query language. The framework was
implemented for SQL only, but the query language
isolation also provided by the query composer gives
us the possibility to add the required support for any
other query language without affecting the
application, but only the underlying database access
framework.

Probably the best examples of vendor specific
statements are ALTER and JOIN syntaxes. The
ALTER statement is the most vendor-dependent of
all. It looks like all the database vendors tried their
creativity on it. These kinds of examples justify our
decision to develop a statement composition tool able
to “translate” the conceptual statement into a real
one, in concordance with the SQL dialect of the
database, in order to handle syntax diversity. .

The implementation of the statement composer was
done according to the conceptual diagram presented
in Figure 3.

Fig.3. The Class Diagram of the Statement Composer
(implemented using the class factory pattern)

The implementation of the statement composer was
based on the class factory design pattern. <SQL Stmt
Composer> is the generalization of the <Oracle SQL
Stmt Composer>, <Informix SQL Stmt Composer>
and/or any other vendor specific statement
composition class. <SQL Stmt Composer Factory>
class is a generalization of the inner Factory classes
contained in all the statement composition classes.

The inner Factory classes implement the create
operation, declared as abstract in the generalization,
used to create a new instance of the outer class.

6. JOINS – PERFORMANCE CONSIDERATIONS

Unlike the current version, in the first version of our
VIDA framework the Statement Composer was not
designed to support joins. While using the VIDA
framework that we developed, one of the first
problems that we detected was the performance of
the joins. This section describes the temporary
solutions used to overcome this problem.

Since join syntax is usually different across database
platforms, it was required to restrict its use. The in-
memory join mechanism, initially developed to
address in-memory data processing needs, was also
used for join processing, instead of doing it at the
database level.

However, this solution had evident performance
problems. Making the join in the memory generates a
lot of traffic in order to bring in the required data.
Also, in some situations the amount of data will be
too large and processing the join operation will
require buffering and creation of temporary files. In
case of very large tables, it will not be possible to
load the entire information in the memory.

Our temporary solution was to create views for the
most used joins that the application performs. From
the application’s point of view all the joins are seen
now in the same way as regular tables. Also, the
database server processes the join statements only the
relevant data being fetched from the machine where
the application is running.

Even if the view statements are database platform
dependent, our framework still remains vendor-
independent. The views are stored in the database
and from the application’s point of view they are
schema objects just like the regular tables. Storing
the views at the database level is fully decoupling
them from the application.

Apart from the static views described above our
framework also provides support for creating
temporary views. These views are required in case a
low frequency join is triggered by a user action and
the amount of data for creating it is expected to be
large. In such a situation, if the relevant permissions
are held by the connected account, our VIDA
framework will produce a view creation statement by
invoking the statement composer for this purpose and
will create the view as a temporary object. The
application will use the temporary created view in
order to get the needed joined data and the view will
be dropped afterwards, when the application will
exit. Of course, such an approach is inefficient for
small amounts of data. In such situations it is better
to perform the join directly in the memory.

89

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2004 ISSN 1221-454X

The above-described methods are not anymore
required in the current version of the framework,
since the support for joins was added to the statement
composer.

7. THE FRAMEWORK ARCHITECTURE

The architecture of the proposed framework for
building VIDA is presented in Figure 4.

Our implementation was ODBC based, but support
for alternate database access protocols is also
provided. As shown in Figure 4, this is achieved
through an Abstract Connectivity Layer used to
isolate the applications from the database access
protocol. The Native Translation Layer also isolates
the application from the vendor specific SQL
dialects, making the SQL look from the application’s
point of view as a well-respected standard.

The Abstract Connectivity Layer, working in
conjunction with the native translation layer,
provides a generic database access interface to be
used by its clients (applications). The Native
Translation Layer converts the SQL statements into
the native SQL dialect of the connected database.

Fig.4. The Proposed Framework Architecture

Data Object Layer is the only one that is application
specific, handling the object-relational conversion.
Each table from the application’s database has a
correspondent class here, able to cope with all the
required operations.

The main advantage of the proposed architecture is
the separation of concerns. The object-oriented
aspects of the application are separated from the
relational aspects of the database and the problems of
each domain can be handled using domain specific
patterns.

Database tuning, locking strategies and caching are
crucial to achieve acceptable performance of a
business information system. [12] Usually, the tuning
concentrates on the database access and is an
iterative process. In such cases, tuning will affect
only the access layer, leaving the application
untouched.

8. PERFORMANCE MEASUREMENTS

The performance of the framework for implementing
VIDA described in this paper was compared with the
performance of an implementation where the
database is directly accessed from the application,
without passing through any isolation layer.

In order to make the test more relevant, the volume
of data used was gradually increased from 1 MB to
50 MB. An Oracle 9i (9.2.0.3) was used to perform
the tests.

In order to capture all the possible aspects of a
database application, a mix of both DDL and DML
statements was used. The test application creates a
new table, alters it with some constraints, inserts a
variable amount of data into it, updates one by one
1% of the records, perform various simple selects and
joins with other table from the schema, and finally all
the data from the newly created table is deleted and
the table dropped. The application that directly
accesses the database was tuned as much as possible
using vendor specific optimization techniques.

As depicted in Figure 5, the overhead introduced by
the isolation layers is very small. Therefore,
considering its advantages, it is advisable to use the
proposed architecture in order to fully decouple the
application from the database.

Even though from CPU processing point of view the
difference is considerable, the overall performance of
the system is not impacted. This is because most of
the time in a database application is spent for I/O
operations (database access), the extra processing
introduced by the framework being negligible.

90

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2004 ISSN 1221-454X

Fig.5. Performance Comparison

9. CONCLUSIONS

In this paper we presented an architecture that
assures the vendor independence of a database
application. Switching from one database to another
having a different vendor is a challenge because no
DBMS is fully compliant with the SQL standard.

Our framework enforces the SQL standard at a
conceptual level. The application views SQL in a
uniform way, irrespective of the vendor specific
dialect in which it is converted by the Native
Translation Layer.

The proposed architecture can easily accommodate
new DBMS; the only component affected being the
Native Translation Layer. Changing the database
access protocol is also possible due to the isolation
assured by the Abstract Connectivity Layer.

The ability to implement Vendor-Independent
Database Applications through a well-defined and
already validated framework offers important
advantages like high flexibility and shorter time to
market.

We used the framework presented in this paper to
implement medium-scale industrial applications. The
measurements showed that the processing overhead
introduced by the isolation layers is not importantly
affecting the overall performance of the applications.
The performance trade-off is reasonable keeping in
mind the important benefits in terms of database

access tuning possibilities, separation of concerns
and vendor independence.

Designing an aspect-oriented version of this
framework is an interesting future work.

10. REFERENCES

[1] Amihai Motro, “Multiplex: A Formal Model for
Multidatabases and Its Implementation”,
Proceedings of Next Generation Information
Technologies and Systems, 4th International
Workshop, NGITS’99, pages 138 – 158, Zikhron
- Yaakov, Israel, July 1999.

[2] Bertrand Meyer, Object-Oriented Software
Construction (2nd Edition), Prentice Hall, 2000.

[3] Bruce Eckel, Thinking in C++ (2nd Edition),
Prentice Hall, 2000.

[4] Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, “Design Patters – Elements of
Reusable Object-Oriented Software”, Addison-
Wesley Pub. Co., 1995.

[5] Hector Garcia-Molina, Jeffrey D. Ullman and
Jennifer Widom, “Database Systems – A
complete book”, Prentice Hall, 2002.

[6] John Paul Ashnfelter, “Database Access
Protocols”, Web Review, November 19, 1999.

[7] Mark Strawmyer, “Building Database
Indepenednt Data Access”, from Codeguru’s
.NET Nuts & Bolts.

[8] MSDN Library, http://msdn.microsoft.com.
[9] Octavian Paul ROTARU, Marian Dobre, Mircea

Petrescu, ”A Framework for Implementing
Vendor-Independent Database Applications",
Proceedings of ECI'04 (6th International
Scientific Conference on Electronic Computers
& Informatics), Kosice - Herlany - High Tatras,
Slovakia, September 22-24, 2004, pp. 68-74,
ISBN 80-8073-150-0.

[10] Shelley Doll, “Is SQL a standard anymore?”,
Builder.Com, June 19, 2002.

[11] Wolfgang Keller, Jens Coldewey, “Relational
Database Access Layers - A Pattern Language”,
Proceedings of PLoP 19996.

[12] Wolfgang Keller, “Object/Relational Access
Layers – A Roadmap, Missing Links and More
Patterns”, Proceedings of EuroPLoP 1998.

91

http://msdn.microsoft.com/

	INTRODUCTION
	THE ANSI SQL STANDARD
	CHOOSING A DATABASE ACCESS PROTOCOL
	HANDLING DDL STATEMENTS
	THE STATEMENT COMPOSER – WHY AND HOW
	JOINS – PERFORMANCE CONSIDERATIONS
	THE FRAMEWORK ARCHITECTURE
	PERFORMANCE MEASUREMENTS
	CONCLUSIONS
	REFERENCES

