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Abstract: An adaptive gain sliding observer for uncertain parameter nonlinear systems
together with an adaptive gain sliding controller is proposed in this paper. It considered
nonlinear, SISO affine systems, with uncertainties in steady-state functions and
parameters. A further parameter term, adaptively updated, has been introduced in steady
state space model of the controlled system, in order to obtain useful information despite
fault detection and isolation. By using of the sliding observer with adaptive gain, the
robustness to uncertainties is increased and the parameters adaptively updated can
provide useful information in fault detection. Also, the state estimation error is bounded
accordingly with bound limits of the uncertainties. The both of them, the sliding
adaptive observer and sliding controller are designed to fulfill the attractiveness
condition of its corresponding switching surface. An application to a single arm with
flexible joint robot is presented. In order to alleviate chattering, a parameterized tangent
hyperbolic has been used as switching function, instead of pure relay one, to the
observer and the controller. Also, the gains of the switching functions, to the sliding
observer and sliding controller are adaptively updated depending of estimation error and
tracking error, respectively. By the using adaptive gains, the transient and tracking
response can be improved.

Keywords: sliding adaptive observer-controller, nonlinear systems, flexible joint robots

1. WHY ADAPTIVE GAIN, SMOOTH SLIDING
OBSERVER-CONTROLLER

The state and parameter uncertainties in the model of
the rigid joints-rigid links robotic manipulators, as
SISO non-linear systems and the deviations of the
parameters from their nominal values lead to the
difficulties of parameter identification and state
estimation. All of these, do absolutely necessary the
designing of the controller and/or the observer such
as the closed loop to be robust. That means stability
with small tracking and estimation errors. It is well

known the robustness to model and parameter
uncertainties and external disturbances of the closed
loop with variable structure controller. Maintaining
the system on sliding surface, the influence of the
uncertainties into the closed loop performances is
alleviated and the evolution is quickly to an
equilibrium point. In [2] is used adaptive variable
structure control with parameterized sigmoid as
switching function (denoted k-sigmoid) with adaptive
modifications of its amplitude (denoted λ -
modification), instead of a pure relay one with
constant gain. In this paper is used a parameterized
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tangent hyperbolic function (denoted k-tanh) as
switching function in order to alleviate, or/and
eliminate chattering. Robust variable structure
observers for nonlinear systems could be found in [9].
The combinations of variable structure observer-
controller for several particular nonlinear systems
with application to robot manipulators are presented
in [1] and [8]. Results concerning the exponential
convergence of adaptive observer under persistent
excitation conditions applied to a class of non-linear
systems are shown in [5] and [6]. In [7], the persistent
excitation condition is relaxed in the adaptive
observer design and an extension to non-linear
external perturbed systems is considered. A further
parameter term, which could be adaptively updated,
has been considered to the state model, in order to
obtain information concerning parameters and their
deviations from nominal values.

The main contributions of this paper are with the
sliding observer and controller design, the choosing
of the gains (the gains of linear part and variable
structure part, respectively), updated law of variable
structure gains, state and tracking error bounds.
Variable structure gains, adaptively updated, become
initial values into updating law.

The paper is organized as follows. In the Section 2
preliminary notions and assumptions concerning
nonlinear affine systems in adaptive observer form
are presented. In Section 3 is proposed an adaptive
sliding observer together with possibilities for the
choosing of them. State error bounds are provided,
too. The design of the sliding controller will be done
in Section 4. In Section 5 an application to a flexible
joint, rigid link robot manipulator and additionally
simulation results are presented. Some conclusions
remark can be found in Section 6.

2. SISO NONLINEAR SYSTEMS IN ADAPTIVE
OBSERVER FORM

Let the SISO nonlinear system be
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If the followings assumptions are hold:
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where hLi
f  is the i-order Lie derivative of the

smooth function h along the vector field f;

A.2.2. let r be the vector field which satisfies
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f
represents the i-order Lie bracket [ ]r,f  of two vector
fields f and r, i.e.
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then, according to Lemma II.1 from [6], there exists a
global space diffeomorphism
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which transforms the system (1) into
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where p,,1i,:,: n
i

n
o K=ℜ→ℜ×ℜΨℜ→ℜψ

are smooth functions.

Moreover, following [4] and [6], by using a filtered
transformation

(6)  ( )π−ζ= tMz ,
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the system (5) can be transformed into the adaptive
observer form
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where ,b,M  and β  are expressed hereafter. Note
that the transformation (6) does not change the term
corresponding of the control input in (5). The matrix

nxpM ℜ∈  can be expressed as 
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( )xp1nN −ℜ∈  unique solution of the matrix
differential equation
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The vector [ ]Tn2
n b,,b1b,b L=ℜ∈  has

constant elements which are the coefficients of
Hurwitz polynomial: n

2n
2

1n bsbs +++ −− L .

Replacing (6) in (8) and using the above notations,
the matrix M can be written as the unique solution of
the differential equation
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The matrix NA  being a Hurwitz matrix, then the
matrices ( )tN  and ( )tM  are bounded if the control
input u, in (8), and the function ( )yΨ are bounded.

The vector Pℜ∈β  is a continuous bounded function
and can be expressed as:
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Remark 2.1. If the assumptions A.2.2 and A.2.3 hold,
then the each element ( ) n,,1i,uyoi K=ψ  is
independent of x. If not, then some or all ( )yoiψ  can
depend of z (i.e. ( )y,zoiψ ). In this case the system
(7) can be written as
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and, obviously, it is not in adaptive observer form.

Remark 2.2. If assumption A.2.6 holds the system (1)
can be transformed directly in adaptive observer form
(7), by using the global diffeomorphism (4), without
the passing trough the intermediary transformed form
(5).

Let ρ  be the integer defined as the global relative
degree of the system (1). According to the definition
4.1.2, from [5], the global relative degree is the
integer such that
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Obviously, the transformed systems (4) and (7) are
the same relative degree with the original system (1).
Taking into account the relative degree, the elements
of the vector term ( )uyoψ , from (7) or (12), can be
written as:
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3. ADAPTIVE GAIN, SMOOTH
SLIDING OBSERVER

In the followings, the attention is focused on the
system (1) and on its transformed form (12). A
sliding observer, with constant and/or adaptive gain is
proposed in this section. All the uncertainties are
considered on the function f and g. Define with ĝ,f̂
the estimates of corresponding functions. No
uncertain is considered into parameter vector π . The
sliding observer is robust despite the third term from
the right side member of differential equation (1) and
(12).

Remark 3.1. The transformed system (12) is more
general than the system (7), although the last one is in
adaptive observer form.
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The sliding mode evolution is performed on the
sliding surface 11 ẑz −  and will proof that the first ρ
state estimate errors are ultimately bounded, while the
others ρ−n  errors are bounded in the presence of the
model uncertainties to the functions ( )xf  and ( )xg .
The following assumptions are considered:
A.3.1. The functions h,g,f  are all of nC -class
functions;

A.3.2. The transformation, introduced by (4), is a
global diffeomorphism

A. 3.3. The relative degree of the system, defined by
(13), is n<ρ ;

A.3.4. The uncertainties in the functions ( )xf  and
( )xg , defined as

(15) 
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fulfill the following conditions
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where the transformation ( )xT̂  is known
diffeomorphism which allow the inverse and ϕεα ,,
are positive constants.

A.3.5. The vector function, ( ) ( )t,u,yt β=β  is
uniformly bounded for every ( )u,y  bounded.

Theorem 3.1. (Sliding observer convergence). It
considers the systems (1), (12) or (7), the last one in
adaptive observer form, ĝ,f̂  available estimates of
function g,f  and uncertainties verifying (16), (17),
then can be designed the adaptive sliding observer
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zẑktanhzẑẑẑ
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which has the evolution on the sliding surface

(19) ( ) ( ) 0x̂T̂xTz~ 111 =−=

where ok is a positive constant. Also, can be

computed the vector gain [ ]Tn1 ,, γγ=Γ L with
the expression

(20) +ℜ∈σσ−−=Γ ,bbAc ,

such as T
cc cA Γ+  is a stable matrix and can be

chosen the vector gain [ ]Tn1 ,, θθ=Θ L such that
the error in the first ρ  transformed state estimates is
ultimately bounded by an arbitrarily small constant
δ , the error of the other ρ−n states is bounded.

Proof: The dynamics of the state estimation error is

(21) 
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With the gain Γ  computed as in (20), it obtains the
polynomial identity
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which, due to the n-1 zero-pole cancellations, leads to
the first order strictly real positive transfer function
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T
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Because T
cc cA Γ+  is a stable matrix and satisfying

the strictly positive real condition (condition B.1.2
from [5]), it may be applied Meyer-Kalman-
Yacubovich. Lemma B.2 2 and the Theorem B.2.2,
both of them from [5]. Consequently, the linear part
of the state estimation dynamics, from (18), is
globally asymptotically stable, i.e.
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The value of the gain 1θ has to be chosen such that on
the surface 0ẑzS 11o =−=  the sliding condition is
fulfilled (the attractiveness condition)

(25) 0SS oo <&

This above condition leads to
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(26) 0t,ẑzẑz 221111 ≥∀−>−γ+θ

and, by choosing the gain 1θ  such that
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the inequality (26) is satisfied with the equivalent
state error dynamics
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The gains iθ  can be chosen such that the following
polynomial identity holds
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It defines the Lyapunov function
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where nP  is the last column of matrix P. By the
addition of the both sides of (36) the term

0,2 >µνµ , it obtains the second order inequality
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Due to the Corollary 5.3 of Theorem 5.1 from [3],
there exists a finite time 1t  such that
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The definition of the vector ν , from (30), and the
above inequality lead to the conclusion that
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Therefore, all the state observation errors in the
transformed space converge to a bounded region, and
the first ρ  errors could be arbitrarily small for
sufficiently large θ . The errors ρ= ,,1i,z~i K

could be made arbitrarily small respecting a value
depending on a positive constant δ
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(41)
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The upper bounds for the state estimation errors,
given by (40) allow the using of the adaptive gain in
sliding observer (18). As in [2], the gains

n,,1i,i L=θ  become time depending, including λ -
modification

(42) ( ) ( ) ( )tz~tt 1oiiioi ϑ−θλ−=θ&

where oioi ,ϑλ  are positive constants and ( )oi tθ  are
chosen respecting polynomial identity (29).

Remark 3.1. If are used adaptive gains, then, in (18),
the variable structure term is introduced with changed
sign.

4. ADAPTIVE GAIN SMOOTH SLIDING
CONTROLLER

Generalizing the sliding controller design, presented
[8] and [9], to nonlinear affine systems with the
relative degree strictly less than the state dimension, it
defines the controller sliding surface
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and ry  the reference to be tracked, assumed to be a
nC function. The expression of sliding controller
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is derived from the expression of feedback
linearization controller where the gain η , of the
variable structure term, has to be computed to fulfill
the attractiveness of the sliding surface and ck is a
positive constant. The derivative of the controller
sliding surface (43) is
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where gain φ  is chosen in order to maintain cŜ
bounded during the observer transient. After
convergence of the observer, applying (40), and

assuming the gains iθ  are chosen as (29), the
controller attractiveness condition
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The equivalent dynamics during sliding is
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i z~yy

Assuming the gains iξ  are the coefficients of a
polynomial with all stable and real roots, and using
the bounds on the state errors (40), the tracking error
satisfies

(50) 

( ) ( )

( ) ∑ θξ
θµ−ε−θ

αθλ+ϕ

λ
λ

θξ
≤−

ρ

=ρ−

ρ−

ρ

1i

i
in

n

n
Pmaxn

Pmin

Pmax

1
r

P2

P

2tyty

for t sufficiently large (especially after the observer
transient).

Remark 4.1. If the variable structure term, in (44), has
the gain adaptively updated by λ -modification

(51) ( ) ( ) ccc Stt ϑ−ηλ−=η&

with cc ,ϑλ  positive constants, then the tracking
error will decreasing asymptotically, after observer
and controller transient.

5. APPLICATION TO A FLEXIBLE JOINT
ROBOTIC MANIPULATOR

The dynamic equations of a single link robot arm
with a revolute elastic joint (robot with flexible
joints) rotating in a vertical plane are given by
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(52)

( )

( )

2

212m2m

1211a1a

qy

uqqkqFqJ

0qsinMglqqkqFqJ

=

=−−+

=+−++

&&&

&&&

in which 1q  and 2q  are the link displacement angle
and the rotor (motor shaft) displacement angle,
respectively. The link inertia aJ , the motor rotor
inertia mJ , the elastic constant k, the mass link M, the
gravity constant g, the centre of mass l and the
viscous friction coefficients aF , mF  are positive
constant parameters.

The control u is the torque delivered by the motor.
Choosing as state variables 11 qx = , 12 qx &= ,

23 qx = , neglecting the viscous friction of the arm,
considering as measured output the position of the
motor shaft, and introducing the vector term

(53) ( ) [ ][ ]TT 11uybt,u,yb =πβ

then can be written the system steady state space
equations

(54)  

( ) ( ) ( )( )

( ) ( )( )

( )

( )
( ) ( ) ( )

3

T

m

31m4mm

4

31a1a

2

4

3

2

1

xy

buxgxf

yu
yu3
yu3
yu

u

J/1
0
0
0

xxJ/kxJ/F
x

xxJ/kxsinJ/Mgl
x

x
x
x
x

=

πβ++=



















+
+
+
+

+



















+



















−+−

−−−
=



















&

&

&

&

The following parameters and uncertainties are
considered (note that the matching conditions are not
fulfilled):

5M = , 10g = , 5.0l = , 200k = , 1Ja = , 05.0J m = ,
1.0Fm = , 200K a = , 4500K m = , 2Bm = ,

06.0Ĵ m = , 30M̂a = , 300K̂ a = , 4500K̂ m = ,

5.1B̂m = ,

where: 
a

a J
MglM = , 

a
a J

kK = , 
m

m J
kK = ,

m

m
m J

F
B = .

With these notations the robot state equations (54)
can be rewritten as

(55) 

( ) ( ) ( )

( )

( )

3

m
31m4m4

43

31a1a2

21

xy

yuu
J
1xxKxBx

yu3xx

yu3xxKxsinMx

yuxx

=

+++−+−=

++=

++−−−=

++=

&

&

&

&

The Lie derivatives, ( ) n,,0i,xhLi
f L= , are:

( ) 3xxh = , ( ) 4f xxhL = ,

( ) ( )31m4m
2
f xxKxBxhL −+−= ,

( ) ( ) ( ) 2m31mm4m
2
m

3
f xKxxKBxKBxhL +−−−=

( ) ( ) ( )
( )( ) 2mm31am

2
mm

1ma4
3
mmm

4
f

xKBxxKKBK

xsinKMxBKB2xhL

−−−−+

−−=

The Lie derivatives, ( ) 1n,,0i,xhLL i
fg −= L , are:

( ) 0xhLg = , ( )
m

fg J
1xhLL = , ( )

m

m2
fg J

B
xhLL −= ,

( )
m

m
2
m3

fg J
KB

xhLL
−

=

It is easy to observe that the system is of order 4
(n=4) and of relative degree two ( 2=ρ ). The state
transformation, defined in (4), is

(56) ( )
( ) ( ) 


















+−−−
−+−

=

2m31mm4m
2
m

31m4m

4

3

xKxxKBxKB
xxKxB

x
x

z

which has the following inverse transform

(57) ( )

























++

++

== −

2

1
m

2m3m4
m

1m2m3

1

z
z

K
zKzBz

K
zKzBz

zTx

The transformed state equations are
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(58) 

( )

( )

( )

( )yuu
J

KB

zBzKKzKB

K
zKzBz

sinKMz

yu3u
J
B

zz

yu3u
J
1zz

yuzz

m

m
2
m

413ma2am

m

1m2m3
2a4

m

m
43

m
32

21

++
−

+

−+−−








 ++
−=

++−=

+++=

++=

&

&

&

&

In order to alleviate the chattering in the state
estimates and in control input, will be used a
parameterized tangent hyperbolic as switching
function and gain adaptively updated to the observer,
as (42), and to the controller as (51). Choosing

[ ]T1331b =  and 10=σ , the relationship (20)
yields the observer vector gain

[ ]T10313313 −−−−=Γ . With the values:
50=θ , 11 =θ , from the polynomial identity (29) can

be obtained the other observer variable structure
gains: 1502 =θ , 75003 =θ and 1250004 =θ .

(59)

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

yuu
Ĵ

K̂B̂

ẑB̂ẑK̂K̂

ẑK̂B̂z~ktanhtz~
K̂

ẑK̂ẑB̂ẑ
sinK̂M̂ẑ

yu3u
Ĵ
B̂

z~ktanhtz~ẑẑ

yu3u
Ĵ
1

z~ktanhtz~ẑẑ

yuz~ktanhtz~ẑẑ

m

m
2
m

4m3ma

2am1o414

m

1m2m3
ma4

m

m

1o31343

m

1o21232

1o11121

++
−

+

−+−

−θ+γ−










 ++
−=

++−

θ+γ−=

+++

θ+γ−=

++θ+γ−=

&

&

&

&

Note that, if is used adaptive gain, including λ -
modification the observer variable structure gains
become negative initial values for the adaptation law
(42).

Accordingly with (43), the controller sliding surface
is defined as

(60) ( )r1r2c yẑyẑŜ −ξ+−= &

with 10=ξ . The corresponding sliding control input,
can be expressed as

(61) ( ) ( ) ( )[ ]ccr2r3 ŜktanhtŜyẑyẑĴu η+φ−−ξ−+−= &&&

where, to fulfill the attractiveness condition (47), the
initial values to the updated law (51) has been chosen
( ) 500 −=η . In order to increase the sliding observer

convergence and to feed to the sliding controller state
estimates closer to the true ones, the parameter ok
has to be chosen greater than ck  in their
corresponding switching function. Therefore, the gain
of the tangent hyperbolic switching function is greater
around the origin.

The trajectory to be tracked is assumed to be
sinusoidal as ( ) ( )t2cos1ty r += .

In the figure 1 can be observed the response without
chattering, due to an appropriate choice of the
parameters in switching functions (the convergence
speed of the observer is greater then of the controller
one). The chattering could appear due to uncertainties
in the functions f , g  and to the supplementary term

πβTb . The response from the figure 2 exhibits a
chattering during the transient time of the observer,
that has a convergence rate comparable of the
controller one. Limitation of the controller amplitude
has been introduced. The above values of iθ ,
obtained by respecting the polynomial identity (29)
have been used as negative initial values in the update
law (42).

6. CONCLUSIONS

A sliding observer and sliding controller with gains of
the modulation functions adaptively updated are
proposed for controlling of nonlinear systems with
relative degree smaller than state dimension. The
switching function has been chosen a parameterised
tangent hyperbolic function. The state dynamics of
the controlled system include an extra parameter
term, further adaptively updated, in order to obtain
useful information despite fault detection. The
parameterised tangent hyperbolic switching function
assures the alleviation or completely elimination of
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chattering, by appropriate choice of parameters in the
switching functions of the controller and observer
Adaptive gains, starting from appropriate initial
values lead to the better output tracking and to the
augmented robustness. Convergence rates, both for
the observer and controller have been established. An
application to flexible joint one rigid link robot is
presented. Closed loop response, obtained via
simulation, confirms the theoretical results.

Fig.1. Closed loop robot response, smooth sliding
observer and controller, parameterized tangent
hyperbolic switching function 5.0k o = ,

25.0k c = , adaptive gains with λ -modification:
1o =λ , 1o =ϑ  1c =λ , 1c =ϑ

Fig.2. Closed loop robot response, smooth sliding
observer and controller, parameterized tangent

hyperbolic switching function 50k o = ,
50k c = , adaptive gains with λ -modification:
1o =λ , 1o =ϑ  1c =λ , 1c =ϑ .
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