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Abstract: In a parametric optimization problem the genes code the real parameters of the
fitness function. There are two coding techniques known under the names of: binary
coded genes and real coded genes. The comparison between these two is a controversial
subject since the first papers about parametric optimization have appeared. An objective
analysis regarding the advantages and disadvantages of the two coding techniques is
difficult to be done while different format information is compared. The present paper
suggests a gene coding technique that uses the same format for both binary coded genes
and for the real coded genes. After unifying the real parameters representation, the next
criterion is going to be applied: the differences between the two techniques are
statistically measured by the effect of the genetic operators over some random generated
fellows.
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1. INTRODUCTION

Everything that can be found in a numerical
computer, numerical information, graphical
information, texts, programs, operating systems,
algorithms etc. is coded with binary digits. That is
why the expressions binary coded genes and real
coded genes, even if they are very often used, are
pleonasms. It is proper to speak about fixed-point
real numbers and floating-point real numbers, but
these expressions aren’t consecrated in the genetic
algorithms’ literature.

In literature is often used a word-game: exploration-
exploitation. The verb to explore means to search
over large areas, while the substantive exploit also
has the meaning of mining exploitation or mine. In
this word-game the verb to exploit means to search
with small steps. A genetic algorithm has good

results if it combines large areas searching with small
steps searching.

In Crawford [1977] there are enounced eight
guidelines that guide a new crossover operator
design. Two of them are important for the present
paper.

- Guideline 5: the crossover operator should
explore, not exploit.

- Guideline 8: In general, small (large) changes in
genotype should produce small (large) changes
in phenotype.

In a genetic algorithm, the exploration is good if the
population covers, in time, uniformly the search
space, and if the number of visited points is as big as
possible. According to guideline 5 (Crawford,
[1977]), the exploration success depends firstly on
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the crossover operator used, and then on the space
shape and the selection method used.

The paper is organized as it follows: in section 2
there is briefly presented the arithmetic crossover. In
section 3 there are presented the binary
representation techniques of real numbers. In section
4 it is explained a new gene coding method, method
that unifies binary coded genes with real coded
genes. In section 5 it is used the bits histogram to test
if the genetic operators were programmed correct. In
section 7 it is used the histogram of Hamming
distance between parents and children in order to
appreciate the crossover operators quality. A
summary of the results will be done in the last
section of the paper.

2. CROSSOVER BETWEEN REAL NUMBERS

In real coded genes genetic algorithms, the parents
chromosomes ][1 kp , ][2 kp  and the children
chromosomes ][1 ko , ][2 ko , Kk ,,1K=  are gene
arrays. The most popular crossover variant between
real numbers is the arithmetic crossover. Genes
situated in the k  position of the children
chromosomes are calculated as it follows:
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where )1 ,0[∈α  is a random real number uniformly
distributed. The arithmetic crossover has a major
disadvantage: it doesn’t explore the whole space.
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Fig.1. The effective space explored by the arithmetic
crossover

In figure 1 it is presented a two-dimensional
searching space )2 ,1[)2 ,1[),( 21 ×∈xx . The
arithmetic crossover produces two children situated
in the rectangle delimited by the ),( ,2,1 AA xx  and

),( ,2,1 BB xx  points that corresponds to the parents
chromosomes and it doesn’t explore the whole space.
In order to avoid this fact, the intermediate crossover
may be used:
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where )1 ,[, 21 δδαα +−∈  are two random numbers
and 25.0=δ  is a number chosen by the
programmer. In the case 25.0=δ  it is necessary to
verify for each gene if the result obtained after the
crossover didn’t overflow the searching space.

3. THE BINARY REPRESENTATION OF REASL
NUMBERS

In order to record the exact value of a real number an
infinite number of digits is needed. For example,
there are known some thousands decimals of the
number π  but its exact value isn’t known. That
means that the value of a real number stored in a
numeric calculator is truncated, as it is represented
with a finite sequence of bits.

A finite sequence of bits qqpp bbbbbbb 11011 +−− KK  is
a fixed-point unsigned real number. The value of this
number is:

 (3) ∑
−=

=
p

qi
i

i bV 2 .

Consequently, with 1++ qp  binary digits real
numbers can be represented in the domain

pV 20 ≤≤  with a resolution of q−2 . The resolution
is the difference between two consecutive real
numbers in the respective representation, and the
maxim representation error is half of the resolution,
that is 12 −−q .

A floating-point real number can be represented as it
follows:

 (4) MV ES ⋅⋅−= 2)1( ,

where }1,0{∈S  is the sign bit, E  is a signed integer
called exponent, and M  is fixed point real number
called mantissa. At the end of a floating point
operation, the numbers E  and M  are arranged so
that the mantissa has only one binary digit equal to 1
in front of the point. This operation is called the
mantissa normalization. In the case of working with a
normalized mantissa, it isn’t necessary to store the
digit in front of the point. The value of the real
number is:

 (5) ).(2)1( FbV msb
nNS off ⋅⋅−= − ,

where F  is the fractional part of the mantissa. The
bit msbb  is the most significant bit of the mantissa. In
the case of floating point real numbers with
normalized mantissa 1=msbb . The exponent

offnNE −=  is stored with a gap of offn  so that the
number N  never has all the bits null. The number
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offn is chosen so that offoff nEn ≤≤− . It can be
observed that the real number 0 cannot be
represented in a floating-point real number with
normalized mantissa. From this reason, the number
real 0 is coded by storing all the bits null.

K S N msbb F offn

Single 4 1b 92 bb L - 3210 bb L 127

Real 6 1b 440 bb L - 392 bb L 125

Double 8 1b 112 bb L - 6412 bb L 1023

Comp 10 1b 152 bb L 16b 8017 bb L 6535

Table 1

The bits signification of the four representations of
the real numbers in the IBM-PC computers is given
in Table 1. The real number is stored as a binary
digits array of form: Kbbbbb 84321 L  where K  is the
byte number of the real number representation, S  is
the sign bit, N  is a bits array that stores the
exponent, msbb  is the most significant bit of the
mantissa, F  is a bits array that stores the fractional
part of the mantissa of the real number, and offn  is
the gap used to compute the exponent.

4. A NEW METHOD OF GENE CODING

The major disadvantage of the floating-point
representation is the dependency between the number
value and the bits weight. That’s why the mutation
and the crossover operators cannot be used the way
they were defined in the case of binary coded genes.
Though, in the representation of floating-point real
numbers with normalized mantissa there are intervals

)2,2[ 1+∈ kkx , Zk ∈ , where all the real numbers
from this interval have the same exponent and the
mantissa’s bits with the same position have the same
weight. For example, the real parameter

),[ maxmin xxx∈  can be normalized with the function:
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In the next examples the “single” type is used, stored
on 32  bits. The numbers in the interval )2,1[  have

1=S , 01111111=N , so the exponent is
0127 =−= NE , and the mantissa takes values

starting with the combination 0000.1 K to the
combination 1111.1 K . The numbers are normalized,
so there are stored only the first 23  bits from the

fractional part of the mantissa. This representation
has the following advantages:

• the chromosome is an array of real numbers;

• there can be used genetic operators defined for
binary coded genes, but also genetic operators
defined for real coded genes;

• there is no need of a function for decoding the
genetic information. It is sufficient to
denormalize the gene.

• All the arithmetic operations are realized by the
co-processor, fact that speeds up the genetic
algorithm speed.

This representation imposes some restrictions when
programming genetic operators for binary coded
genes. The mutation and the crossover must not
modify the bits that carry the sign and the exponent.
For all the numbers normalized to the interval

)2,1[~∈x  on four bytes, the bits that shouldn’t be
modified are 00111111191 =bb K .

5. TESTING GENETIC OPERATORS WITH
MONTE CARLO METHODS

In order to verify the correctitude of the genetic
operators implementation, it is necessary to make
some statistic tests for the random initialization, the
mutation and the crossover. The gene random
initialization was implemented with the instruction:

 (7) ;1  :  += Randomg

where the function Random  generates a random
number in the interval )1,0[ . In Figure 2 there is
presented a bit histogram for 1000 genes random
initialized.

Fig. 2. Statistic test for random initialization

In the figure, on the abscissa the bits are placed in the
order from table 1, and on the ordinate is the
probability of the bits that have the value 1. The
random initialization is correct if 021 == bb ,

192 =bb K , and any bit from 3210 bb K  takes the
value 1 with a probability of 0.5. The mean value
was calculated only for the bits 3210 bb K  that can
modify their content.
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In Goldberg [1991] the next recommendation is
enounced: “the mutation probability must not be
affected by the bits number that code the gene”. In
order to fulfill this recommendation and to avoid
excessive use of the random generator first it is
calculated n , the number of the bits that will suffer a
mutation with the instruction:

 (8) );*23(  :  RandompmTruncn +=

where Trunc  is the round function by truncation to
the lower value, 23  is the number of bits of the
fractional part of the mantissa, pm  is the mutation
probability, and Random  is the function that
generates random numbers uniformly distributed in
the interval )1,0[ . Then the random numbers
generator is used n  times more to establish the bits
that are going to be modified.

Fig. 3. Statistic test for mutation

In figure 3 is presented a histogram of the bits that
code the gene for 1000 applications of the mutation
operators with 05.0=mp . The gene was initialized
with the value 0.1=g . The mutation operator is
programmed correctly if it results from the histogram
that every bit from 3210 bb K  takes the value 1 with
the probability mp .

Fig. 4. Statistic test for crossover

In figure 4 it is presented a histogram of the bits that
code the 1g  genes (gray bars) and the 2g  genes
(black bars). The histograms were realized after the
crossover was applied 1000 times over the genes:

L99.11 =g  and 0.12 =g . It was studied the one-
point crossover as it was described in Goldberg
[1991]. The crossover operator is programmed
correctly if the bits 3210 bb K  of the 1g  histogram
take the value 1 with an increasing probability from 0
to 1, and the bits 3210 bb K  of the 2g  histogram take
the value 1 with a decreasing probability from 1 to 0.

6. THE CROSSOVER OPERATOR QUALITY
MEASURING METHOD

The Hamming distance between two chromosomes
was used to analyze the uniform crossover even from
the first papers of Booker or Eshelman where there
were suggested the uniform crossover and the HUX
(highly disruptive form of crossover) crossover. Let
it be two genes 001111 =g  and 101102 =g . The
hamming distance between 1g  and 2g  is:

 (9) )10001()10110 xor 00111() xor ( 21 bcbcppbcd h ===

where the logical operator ""xor is applied to the bits
with the same position, and )( ⋅bc  is a function that
counts the non-zero bits in a string of bits. A first
result obtained from using the Hamming distance in
the analyze of the crossover operator is the Booker
observation:
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where 1o  and 2o  are called substitute offspring.

Correlating the guidelines 5 and 8 presented by
Crawford with Booker observation, the next criteria
results:

Criteria: the crossover operator explores the better
the parameters space if the Hamming distances
between the parents and the offspring chromosomes
are statistically the larger.

Let it be a species of solutions that have a gene coded
with the method suggested in section 4 of the present
paper. It is noted with 1p , 2p  the parents
chromosomes and 1o , 2o  the offspring
chromosomes. Rana [1999] notices that:

 (11) 
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In Rana [1999] it is covered the set of the
independent chromosomes and the histogram of the
parents-offspring Hamming distances is realized. The
Hamming distance between parents and offspring
was calculated with the formula:

 (12) ( )),(),(min),( 2111 opdopdopd hhh +=

The quality of the crossover operator is appreciated
considering the probability of substitute offspring
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apparition and the mean value of the distances
calculated with the formula (12).

In the present paper there are considered a set of
random initialized chromosomes and the Hamming
distance between parents and offspring is calculated
with the formula:

 (13) 
2

),(),(),( 2111 opdopdopd hh
h

+
= .

The quality of the crossover operator is appreciated
considering the mean value and the dispersion of the
distances calculated with formula (13).

Moreover, this method is extended to the comparison
of the binary crossover with the arithmetic crossover
and to the comparison of the exploration realized by
the arithmetic crossover with the exploration realized
by the random initialization of the population.

The analyze method consist in random initialization
of the parents genes and then two different crossover
operators are applied and two pairs of children are
obtained. Then, for each crossover operator, it is
calculated the Hamming distance between parents
and offspring. The last operations are repeated for a
large number of pairs of genes random initialized,
and then the Hamming distance histograms are
graphically represented.

7. EXPERIMENTAL RESULTS

One point crossover is largely presented in Goldberg
[1991]. In the case of uniform crossover, the
probabilities of every bit transfer from one parent to
offspring and the bit transfer in the same position,
from the other parent is 0.5.

Fig. 5. The comparison between one point crossover
and uniform crossover

In figure 5 there are comparatively presented the
Hamming distance histograms between parents and
offspring for one point crossover and uniform
crossover. Summing the two samples from the figure
5 13.3% from the offspring obtained through one
point crossover are substitute offspring, while only
1.23% of substitute offspring obtained after the
uniform crossover, so the quality of the exploration
realized by the uniform crossover is better because
the probability of substitute offspring appearance is
smaller.

Fig. 6. The comparison between uniform crossover
and the HUX crossover

In figure 6 there are comparatively presented the
Hamming distance histograms between parents and
offspring for uniform crossover and the HUX
crossover. The HUX crossover is a uniform
crossover variant that reduces the distance dispersion
between the parents 1p , 2p  and the offspring 1o , 2o
imposing:

 (14) 
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the ""div  operator from (12) representing the integer
division without rest. The mask of the moved bits

cm , of the HUX crossover is obtained from the
Hamming mask 21 xor ppmh = , from which half of
the bits with the value 1 are removed. Of course, the
positions of these bits are randomly chosen. For 23
bits genes, the probability of substitute offspring
decrease from 1.23% in the case of uniform
crossover to 0.01% in the case of HUX crossover.

If the method suggested in section of the present
paper is used, then the parents chromosomes ][1 kp ,

][2 kp  and the offspring chromosomes ][1 ko , ][2 ko ,
Kk ,,1K=  are gene arrays and if it is performed the

arithmetic crossover with the formula (1), where
)1 ,0[∈α  is a random real number, it results that:
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that means that the bits of a gene doesn’t modify
their weight in the gene value (see section 4). So, the
arithmetic crossover can be compared to any of the
binary crossover variants.

Fig. 7. The comparison between the HUX crossover
and the arithmetic crossover
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In figure 7 there are comparatively presented the
Hamming distance histograms between parents and
offspring for the HUX crossover and the arithmetic
crossover. It can be noticed that the Hamming
distances between parents and offspring are bigger in
the case of the arithmetic crossover.

In the introductory part it was stated that the
exploration is better if the number of points “visited”
by the fellows is bigger. This “visitation” of the
searching space starts in the moment of the random
initialization of the genetic algorithm. The coding
method suggested in section 4, together with the
analyze method formerly used allow the comparison
of the performances of the exploration realized by the
random initialization with the exploration realized by
the crossover genetic operator.

Fig. 8. The comparison between the exploration
realized by the arithmetic crossover and the
exploration realized by the random initialization
of the genes

In figure 8 there are presented two histograms: the
histogram of the Hamming distances between parents
and offspring in the case of arithmetic crossover and
the histogram of the Hamming distances between two
randomly initialized genes. It can be notices that the
arithmetic crossover is almost as efficient as the
random initialization of the genes.

8. CONCLUSIONS

From the figures 5, 6 and 7 it results that due to the
criteria enounced in section 6, the one-point
crossover has the weakest performance and the
performances increase from the uniform crossover,
the HUX crossover to the real numbers crossover.

The arithmetic crossover (see formula (1)) realize a
very good search when the population is concentrated
in an ecological niche, improving the exploring

process (see figure 7, section 7), but it doesn’t
explore the whole searching space (see figue1,
section 2). So, the arithmetic crossover doesn’t fulfill
the Crawford’s guideline 5.

The unwanted result from the figure 2 suggests a
combined using of the uniform crossover or the HUX
crossover with the arithmetic crossover. In this way,
the arithmetic crossover reinitializes the bits of a part
of the population, preserving the good solutions near
the optimum point, while the binary crossover
explores very well the searching space.
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