
THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, 2002 ISSN 1221-454X 

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS 

This paper was recommended for publication by Emil CEANGĂ 
108 

A DIFERENT APPROACH IN THE  

PARAMETERS’ IDENTIFICATION OF A JFET 

USING GENETIC ALGORITHMS 

Radu BELEA, Liviu BELDIMAN 

Department of Control System and Industrial Informatics, University “Dunărea de Jos” 
of Galati, Faculty of Electrical Engineering and Computer Science, Domneasca Street 
47, 6200, Galaţi, RomaniaPhone: (+40) 236-414872,  Phone+Fax: (+40) 236-460182,  

E-Mail:  Radu.Belea@ugal.ro., Liviu.Beldiman@ugal.ro. 

Abstract: The genetic algorithms are developing in three directions: the genetic 
algorithms theory, the genetic algorithms programming and the study of the problems 
that can be solved with genetic algorithms. In this paper it is presented a study on the 
identification of the parameters of a JFET (Junction Field Effect Transistor). The 
problem is very exciting because the JFET has two mathematical models: an empirical 
one, and an analytic one, both of the models being nonlinear in parameters. In a 
parametric identification problem, it is minimized the distance between an experimental 
data set and an analytical function, which represent the mathematical model of the 
studied phenomenon. Basically, a genetic algorithm can maximize a fitness function, 
which is a positive defined function whose maximum is searched. However, genetic 
algorithms can also solve minimum problems, on condition that to the minimum 
problem can be applied an algebraic transform or a rank based transform in a maximum 
problem. 
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1. INTRODUCTION 

A physical process is a physical object that has at 
least one measurable input value and one measurable 
output value. The identification of a physical process 
has two stages: 

o Finding an adequate mathematical model for the 
physical process. 

o Specifying the parameters’ values for that 
mathematical model. 

The term “parametric identification”, although well 
known, is a little bit vague, because the verb “to 
identify” means to find, to specify, an element of a 
discrete set, while the “parameter” is usually a real 
number. In fact, the parametric identification 

problem is an optimization problem, which searches 
the best value combination for the model parameter 
set. 

In parametric identification problems one should start 
from an experimental data set )}u,y{( nn , m1n K=  
and a mathematical model, )x;u(gy = , where y  is 
the output, u  is the input vector and x  is the model 
parameter vector. Usually, it must be minimized a 
quadratic objective function of type: 

(1) ( )∑ −=
=

m

1n

2
nn y)x;u(g)x(f , 

where ( )xf  is the distance between data set and the 
mathematical model. If the mathematical model is 
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linear in parameters, then the last squares method can 
be used, but in many cases the physical models are 
nonlinear functions and in this case the optimization 
methods who use derivatives proves to be very 
difficult. 

Kristinsson (1992) revives the use of genetic 
algorithms in parametric identification techniques of 
dynamic systems. Kristinsson uses the genetic 
algorithm known as SGA (Simple Genetic 
Algorithm), with genes binary coded, as it is 
described in Goldberg (1991) or in Michalewicz 
(1994). The objective function is of type minimum 
distance and it is transformed in a fitness-like 
function through a variant of the ranking selection 
method (transform (6), briefly presented in section 3 
of this paper). In the article it is presented the 
parametric identification results of a discrete model 
and a continuous one, and the results are compared 
with an identification realized with the instrumental 
variables method. It is also presented the 
identification results of the parameters of a nonlinear 
model of a servomotor, which acts with friction. 

In Maclay and Dorey (1995) it is presented a case of 
identification of a nonlinear model of a vehicle 
engine and a trailer. In the model it is considered the 
dynamic given by the vehicle mass, the trailer mass, 
the coupling elasticity constant and the action of the 
friction forces. Some parameters were calculated 
from direct measurements, but 9 parameters were 
determined minimizing the objective function with 
the help of SGA genetic algorithm. The objective 
function was turned into a fitness-like function with 
transform (2) (presented in section 2 of this paper). 
The results obtained with the help of the genetic 
algorithm were compared with the ones obtained by 
minimizing the objective function with the 
Levenberg - Marquartd method.  

Bastien (1997) uses the genetic programming in 
order to identify the static nonlinear function that 
describes the functioning of a gas-fired furnace. The 
genetic algorithm was more complicated because it 
had to establish the structure of the mathematical 
model that was used to identify the nonlinear model. 
The identification was done on a data set of 220 

)u,y( ii  pairs, where the inputs iu  are gas and air 
flow rates and the output iy  is the 2CO  
concentration from the burned gases.  

This paper has the following structure: in section 2 
there are presented some algebraic methods used to 
transform a function of minimum into a fitness-like 
function. In section 3 there is presented the ranking 
selection method in which the probability to act in 
reproduction according with the position in a list. In 
section 4 there are introduced two mathematical 
models used to the parametric identification of the 
JFET. In section 5 there are presented the genetic 

algorithm and the identification results. In the last 
section the research results are summarized. 

2. THE ALGEBRAIC TRANSFORM OF A 
MINIMUM FUNCTION INTO A FITNESS-LIKE 

FUNCTION 

Given a vectorial function )x(fmin , nRx∈  that has 
to be minimized, then the transform of the function 

)x(fmin  into a fitness-like function )x(fmax  must 
carry out the following conditions: 

o The function )x(fmax  must be positively 
defined; 

o The functions )x(fmin  and )x(fmax  must have 
the same position for the extreme points; 

o The extreme order must be switched. 

The simplest way of transform the objective function 
)x(fmin  into a fitness-like function )x(fmax  is the 

transform: 

(2) 
⎩
⎨
⎧

≤−
>−−

=
0)x(fCif0
0)x(fCif)x(fC

)x(f
min

minmin
max  

Choosing the constant C  is a difficult task because a 
too small value of the constant nullifies the function 

)x(fmax  over almost the whole search space, while 
choosing a too bigger value for the constant C  leads 
to a flat top function. 

For example the minimum of the function is searched  

(3) ( ) ( )22
2

1min 3/2x  83/2x  8)x(f −−−=  

over the space ]1,0[X,X 21 ∈ . For 20C = , with the 
transform (3), the fitness-like function from the 
figure 1 is obtained. 

 
Figure 1. Modifying the function (3) into a 

fitness-like function with transform (2). 
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To overcome the disadvantages of the transform (3), 
the Cauchy transform can be used: 

(4) 
)x(fc1

1)x(f
min

max ⋅+
=  

where c  is a constant chosen so that 
1)x(fc minmin <<⋅ . If the transform (4) is applied to 

function (2) for 1c = , then it is obtained the 
fitness-like function from figure 2. 

 
Figure 2. Modifying the function (3) into a 

fitness-like function by transform (4). 
 

If the value of the function in the minimum point 
0)x(f minmin →  and the constant c  is correctly 

chosen, then the function )x(fmax  has a pronounced 
maxim even if the function )x(fmin  is of type 
minimum flat. In the case presented in figure 2, the 
increase of the constant c  leads to the “sharpening“ 
of the maximum. 

A typical case of positive defined, minimum 
objective function is the function of type “minimum 
distance”. If the measurements from which the 
objective function is calculated are error affected, 
than the function )x(fmin  has a minimum flat shape 
and its value in the minimum point )x(f minmin  is 
big. So, it is difficult to accomplish the condition 

1)x(fc minmin <<⋅ , without having the function 
)x(fmin  turned into a maximum flat top function. In 

this case, the next transform may be used: 

(5) ( )C)x(fc1
1)x(f

min
max −⋅+

=  , 

where the constant c  is chosen on the same criteria 
as in the case of the transform (4). At the first 
experiment the constant 0C ≥  is set to 0 . In the next 
ones the constant C  is adjust such that: 

(6) ( ) 1C)x(fc0 minmin <<−≤  

 

3. THE RANKING SELECTION METHOD 

In a SGA genetic algorithm the proportional selection 
method is used and the probability of an individual to 
be picked out for reproduction is proportional with 
his fitness function value. This method reproduces 
the natural selection principle but it also has some 
disadvantages: 

o If an individual has its fitness function much 
higher than the average (the super-individual 
problem), then it is possible to participate alone 
at the creation of the new generation. This fact 
will lead to the loss of the population diversity 
and to the premature convergence of the 
algorithm; 

o If the differences between the fitness functions 
of the individuals are very small (the flat top 
problem), then the population cannot evolve and 
the genetic algorithm is reduced to a random 
search optimization method. 

The term “ranking selection” comes from the verb 
“to rank” that means “to classify”. The ranking 
selection method avoids these disadvantages, as it 
calculates the selection probability in function of the 
position held by the individual in a rank that contains 
all the individuals in the population arranged antitone 
by the value of the fitness function. 

Further on, a variant of this method is presented, in 
which the probability )i(p  that an individual is 
selected for reproduction is calculated with the next 
formula: 

(7) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−φ

−φ= )1i( 
1j
12

j
1)i(p  ;        21 ≤φ<  , 

where j  is the number of individuals in the 
population, i , j,,1i K=  is the position of that 
individual in the rank, and φ  is a parameter called 
selection pressure. In a genetic algorithm in which 
the entire population is replaced in each generation, 
the expected value of the selections number of an 
individual is: 

(8) ( )1i
1j
12)i(pj)i(E −

−
−φ

−φ=⋅=  

So, the expected value of the selections number of 
the best-ranked individual is φ=)1(E . In genetic 
algorithms, through the recombination of the genetic 
information of two parents, it results two offspring, 
so )i(E  is also the expected value of the number of 
offsprings of the individual that has the i  position in 
the rank. In figure 3 the function )i(E is presented: 
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Figure 3. The expected value of the number of 

offsprings, in a SGA. 
 

About the ranking selection method it can be stated 
that: 

o The method can be successfully applied both in 
maximum and minimum type problems; 

o The selection pressure, “a qualitative indicator 
used in understanding how the genetic algorithm 
works”, is in this case a “control parameter of 
the genetic algorithm”; 

o In the presence of a super-individual in the 
population, the ranking selection method gives 
better results than the proportional selection 
method. 

In a genetic algorithm, a small selection pressure 
occurs in two cases: when the population is 
degenerate or the objective function is of type flat 
top. The unique disadvantage of the ranking selection 
method is that the genetic finds a champion even if it 
isn’t necessary, that is the case when the selection 
pressure is too small. 

4. MATHEMATICAL MODELS FOR THE JFET 

This problem is a very interesting one, because the 
JFET has two mathematical models: an analytic one 
and an empirical one that cannot be inferred one from 
the other. The analytic model of the JFET, presented 
in Grove (1967) or in Dascălu (1982) is: 

 

(9) 

( ( )
( )

( )
( )

) ,
V

V
3
2

V
VV

3
2V

3
G

I

2/1
P0

2/3
GS0

2/1
P0

2/3
DSGS0

DS
0

D

−Φ

−Φ
⋅+

+
−Φ

+−Φ
⋅−=

 

so it is a two places function )V,V(fI DSGSD = , that 
has three model parameters: 

o 0Φ  - the potential internal difference of the 
command junction; 

o PV  - the channel closing voltage; 

o 0G  - the channel initial conductance. 

The parameter 0Φ  depends on the manufacturing 
technology of the command junction. For silicon pn 
junction the internal potential difference of the 
command junction is V  9.07.00 L=Φ , so it takes 
values in a restrained interval. 

The parameters PV  and 0G  depend both on the 
manufacturing technology of the command junction 
and on the transistor geometry. The parameter PV  
can be experimentally determined. The parameter 

0G  is more difficult to access experimentally, so the 
initial channel conductance is evaluated, in 
conditions that 0VGS =  and PDS VV −= , from the 
equation: 

(10) 
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−Φ

Φ
+Φ−= 2/1

P0

2/3
0

0P
0

DSS
V

22V
9

G
I , 

where DSSI  is a measurable parameter called 
saturation current. 

The model (9) is valid for PGSDS VVV −< , that is 
for the curved zone of the output characteristic, 
called “triode zone”. The zone where the output 
characteristics are parallel with the abscissa is called 
“pentode zone”. The limit between the triode zone 
and the pentode zone is calculated substituting 

PDSGS VVV +=  in the model (9) and is: 

 

(11) 

(

( )
( )

) .   
V
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2
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Substituting PGSDS VVV −=  in the model (9) the 
analytic model of the transfer characteristic 

)V(fI GSD =  is obtained: 

(12) 

(

( )
( )

) .    
V

V
2

V22V3
9

G
I

2/1
P0

2/3
GS0

P0DS
0

D

−Φ

−Φ
+

++Φ−=

 

Given a JFET with mA  8IDSS = , V  5.2VP −=  and 
V  8.00 =Φ . In figure 4 with the function (12) the 

transfer function was plotted, with the function (9) 
there were plotted the output characteristics for 

V  5.0kVGS ⋅−= , 4,,0k K= , and with the function 
(11) the limit between the triode zone and the 
pentode zone was plotted. 
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Figure 4. The JFET characteristics 

 

The empirical model has the expression: 

(13) 
2

P

GS
DSSD V

V1II ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

and it is a tangent parabola to the abscissa in the 
point PV , that intersects the ordinate in the point 

DSSI . It can be noticed that the empirical model has 
a much simpler expression, it has only two 
parameters but it is valid only for a transfer 
characteristic measured for PGSDS VVV −≥  and for 
the pentode zone of the output characteristics. 

5. EXPERIMENTAL RESULTS 

The genetic algorithm was run in the next conditions: 

o The population size: 30N =  

o The number of new individuals in each 
generation: 20M =  

o The elite group size: 1E =  

o The mutation probability: 05.0pm =  

o The selection pressure: 5.1=φ  

o The gene length: bits  10L =  

The identification was made with two minimal 
quadratic error type objective functions: 

(14) 
[ ]
[ ]T0PDSS

a

T
PDSS

e

)i(),i(V),i(I)i(x

)i(V),i(I)i(x

φ=

=
 

(15) ( )[ ]∑
=

∗∗∗ −=
12

1n

m
DSD

m
D )i(x);n(VI)n(I)i(f , 

where )i(f e  is the objective function of the empirical 

model, )i(f a  is the objective function of the analytic 
model, 30,,1i K=  is the individual index, )i(IDSS , 

)i(VP  and )i(0Φ  are the model parameters obtained 

decoding the individual genes, and ( ))n(V),n(I m
DS

m
D , 

12,,1n K= , are the 12 pairs of values experimentally 
determined on whose basis the identification was 
made. 

The transform of the objective function was made 
with transform (5), with the parameters 
experimentally obtained 1c = , I 3.0C =  and with 
the ranking selection method (transform 6) where the 
selection pressure was considered 5.1=φ . 

In figure 5 it is plotted through dots the datum from 
whom the parametric identification has started, and 
with a continuous line it is plotted the transfer 
characteristic obtained from the parametric 
identification. In the left it is plotted the empirical 
model result, and in the right the analytic model 
result. It can be noticed that, both fort the empirical 
model and for the analytic one the input data are 
matching very well with the identification result. 
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Figure 5. A comparison between the JFET transfer characteristic obtained from identification and the one 

experimentally determined 
 

i m
GSV

]V[  

m
DI

]mA[  

m
D

a
D II −

]mA[  

m
D

a
D II −

]mA[  
1 0 6.21 0.12  0.14 
2 -0.02 5.15 0.02 -0.01 
3 -0.04 4.19 -0.06 -0.10 
4 -0.06 3.31 -0.10 -0.15 
5 -0.08 2.47 -0.07 -0.10 
6 -0.10 1.73 -0.02  0.03 
7 -0.12 1.10  0.04  0.05 
8 -0.14 0.59  0.09  0.12 
9 -0.16 0.22  0.12  0.16 

10 -0.18 0.07  0.05  0.08 
11 -0.20 0.05 -0.04  0.02 
12 -0.22 0.05 -0.05 -0.05 
Table 1. A comparison between the errors of the 

empirical model and the analytic model 

In table 1 there are presented the measured data from 
which the identification was started and the errors 
between the two models of the JFET: 

o m
GSV  = the measured grid-source voltage 

o m
DI  = the measured drain current 

o m
D

e
D II −  the empirical model error 

o m
D

a
D II −  the analytic model error 

In the table 2 there are comparatively presented the 
parameters values obtained after the running of the 
genetic algorithm over the two models, and in the last 

line it is presented the modeling error calculated with 
the formulae )n(II e

DD =  )n(II a
DD =  

(16) [ ]∑
=

−=σ
12

1n
D

m
D )n(I)n(I

12
1    

At first sight, both the empirical model and the 
analytic model give very good results. At a closer 
look, it can be noticed that V 4.10 =Φ  an artificial 
value because for silicium the width of the forbidden 
band is eV 1.1WW cc =− , so, in consequence, 

V 1.10 <Φ . The internal potential difference, 0Φ , 
can be calculated, if there are known the impurity 
concentrations from the junction’s p and n zones, and 
if there are known the energetic values introduced by 
the impurities. For a silicium pn junction, the typical 
value of the potential difference value is 

V  9.07.00 L=Φ . 

6. CONCLUSIONS 

The JFET physical parameters’ identification leads to 
the following conclusions: 

o In the calculations that refer to the “pentode 
zone” of the JFET characteristics, the empirical 
model (12) is more precise than the analytic one 
(8). Moreover, the empirical model is easier to 
use because it is a simple analytic function. The 
typical application in which the transistor works 
in the pentode zone is the JFET small signal 
amplifier. 
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o The empirical model is not valid in the “triode 
zone” of the JFET characteristics, where the 
analytic model is used. The typical application in 
which the JFET works in the triode zone is the 
use of the transistor as “voltage-steered resistor” 

o The tabled data set is valid only in the output 
characteristics pentode zone. Starting from this 
data set, the 0Φ  parameter identification is 
irrelevant maybe because the analytic model 
sensitivity is very little depending on the 
parameter 0Φ . In this case, it is reasonable to 
choose V  8.00 =Φ  and to identify only two 
parameters DSSI  and PV . 

The genetic algorithm minimizes very well any of the 
functions (13), no matter if the formula (5) or the 
ranking selection method (6) is used for the 
transform of the objective function in an adjustment 
one. In figure 6 it is presented the shape of the 
adjustment function )x(f e  represented with the 

curve levels 1)x(f e = , 3)x(f e =  and 5)x(f e = , 
calculated for the input data set from table 1. 

 

I 
DSS

[mA] 

V 
GS 

[V] 

Figure 6. The shape of the adjustment function 
)x(f e  

 

 

 

 

 

 

 

 

The objective functions (12) and )x(f a  (13) have 
too complicated expressions to be used by a 
derivative optimization method. In this way, it is 
justified the use of a seeking method, but the shape of 
the objective function from figure 6 isn’t too 
complicated, and it is expected that another methods 
like the relaxation method or the bit-climbing 
algorithm should also find the correct result. 
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