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Abstract: A cellular neural network is an artificial neural network which features a multi-
dimensional array of neurons and local interconnections among the cells. Neural networks are 
systems with several equilibrium states. It is exactly this fact (existence of several equilibria) that 
grants to the neural networks their computational and problem solving capabilities. The paper is 
concerned with dynamical properties of the model of a cellular neural network as a dynamical 
system with several equilibria displaying interaction delays. There are given sufficient conditions 
for stability of the cellular neural networks. 
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1. INTRODUCTION 
 

Cellular neural networks (CNNs), introduced in 1998 
(Chua and Yang, 1998), are artificial neural networks 
displaying a multidimensional array of cells and local 
interconnections among the cells. CNNs have been 
successfully applied to signal processing, image 
processing, to solve partial differential equations and 
nonlinear algebraic equations. In such applications 
stability and other problems of dynamical behaviour 
of the CNN are equally important. These properties 
are necessary for the network to achieve its goal and 
have to be checked on the mathematical model. 
 
Large CNN  chips can be implemented using VLSI 
technology. The finite switching speed of amplifiers 
and communications time introduce time delays in 
the signal transmition between the cells. These lags 
may introduce oscillations or may lead to instability 
of the network. 
 
In this paper, sufficient conditions for the global 
stability of a cellular neural network with time delay 
are stated. These conditions are independent of the 
delay parameter. 
 
 

2. THE MATHEMATICAL MODEL AND 
PROBLEM STATEMENT 

 
The aim of this paper is to obtain sufficient 
conditions for global stability of a CNN with time lag 
feedback and zero control template 
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where j is the index for the cells of the nearest 
neighbourhood N of the i th cell and ai is a positive 
parameter. 
 
First, an isolated cell with their dynamics is 
considered 
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and stability criteria are stated. Next, we have to 
consider the interconnections which are nonlinear 
and to impose the so-called “conditions of passive 
interconnection” (Willems, 1972) which are 
sufficient for the exponential stability preservation. 
 



THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI 
FASCICLE III, 2000 ISSN 1221-454X 

12 

One can shift the equilibrium point x* to the origin, 
so that system (2) can be written into the form: 
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where *
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The nonlinearities  
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are bounded, their range being [-1, 1]. Also these 
functions are monotonically increasing and globally 
Lipschitzian. This means they satisfy the inequalities 
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or more specific 
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since f(0) = 0, where the Lipschitz constant is L = 1.  
The function g(z) satisfy the same Lipschitz 
condition with the same constant L = 1. These 
properties of the nonlinear functions suggest 
application of the absolute stability theory methods. 
 
The linear shifted subsystem of the isolated cell 
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has the frequency domain characteristic 
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3. MAIN RESULT 
 
Theorem: Consider system (7) with frequency 
domain characteristic (8) under the following 
assumptions: 

i) ai > 0, i = 1, … ,n; 
ii) The nonlinear functions g(σ ) are globally 

Lipschitz satisfying 
 

0)0(,1
)()(

0
21

21 =≤
−
−≤ g

gg
σσ

σσ
 (9) 

 
The frequency domain Popov condition  
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holds and the isolated cell has an equilibrium point 
which is asymptotic stable if the system satisfies one 
of the following conditions: 
a) For excitatory feedback (wii > 0),  wii ∈  (0, ai) 

and β ∈  ( 0, 1/wii). 
b) For inhibitory feedback (wii < 0),  wii ∈  (-ai, 0) 

and β ∈  ( -1/wii, +∞ ). 
 
The frequency domain condition (10) leads to the 
following inequality: 
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which holds for 
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Inequality (13) is equivalent to 
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The left hand side of the inequality (14) is a 
difference between two squares. We obtain: 
 

( ) ( )[ ]⋅−−++ iiiiiiii awawa βϖ τβ 1cos12  (15) 
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There are two cases: 
 
1. For excitatory feedback, wii > 0, from (12) it 

follows β ∈  ( 0, 1/wii) for the most unfavourable 
case cosω τ i = -1 and from (15) wii ∈  (0, ai) and 
the same condition β ∈  ( 0, 1/wii). 

2. For inhibitory feedback, wii < 0, from (12) it 
follows β ∈  ( -1/wii, +∞ ) for the most 
unfavourable case cos ω τ i = 1 and from (15)      
wii ∈  (-ai, 0) and the same condition β ∈  ( -1/wii, 
+∞ ). 

 
We obtain a delay-independent parameter condition 
for the asymptotic stability of the equilibrium point 
of an isolated cell. 
 
The same result may be obtained using the following 
Liapunov functional defined e.g. on R x L2 (-τ i, 0; R) 
as follows: 
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where α  >  0, β >  0 are suitably chosen arbitrary 
parameters. Along the solutions of the shifted system 
this functional reads 
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Its derivative (along system’s solutions) is  
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Taking into account the Lipschitz constant that 
equals 1, we may use the (rather conservative) 
estimates: 
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and obtain: 
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Quadratic form definite sign arguments will give the 
following choice for α  i and β i 
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which require as previously the “small gain 
conditions” iii aw < . 

 
 

4.  INTERCONNECTION EFFECTS 
 
The role of interconnections in stability preserving is 
crucial. There are several approaches is coping with 
interconnections (Willems, 1972; Vidyasagar, 1981). 
All of them are based on the properties of the 
Liapunov functions and for this reason we took the 
both approaches in the previous section. Nevertheless 
there are some additional restrictions. First of them 
restricts the problem to linear interconnections. This 
restriction may be overcome by a change of the state 
variables, which is usual in the theory of neural 
networks and relies in monotonicity of the nonlinear 
functions. The second problem is given by the time 
delay in the interconnections. Such problem occurred 
previously in the theory of interconnected nuclear 
reactors (Goriachenko, 1977). Provided Lebesgue or 
Riemann integrals may be replaced by Stieltjes 
integrals, this problem is solvable using 
rearrangement inequalities (Hardy, Littlewood and 
Polya, 1946). 
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