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Abstract: The paper presents a robust control design strategy for bioprocesses, which are 
characterized by strongly nonlinear dynamics. More precisely, we present the H2 
methodology in order to compute the controller for a recycle Continuous Stirred Tank 
Bioreactor (CSTB). We consider a general method of formulating control problem, which 
makes use of linear fractional transformation as introduced by Doyle (1978). The 
formulation makes use of the general two-port configuration of the generalized plant with 
a generalized controller. The H2 norm is the quadratic criterion used in optimal control as 
LQG. The overall control objective is to minimize the H2 norm of the transfer matrix 
function from the weighted exogenous inputs to the weighted controlled outputs. The 
advantage of H2 control technique, which uses the linearized model of the CSTB, is that it 
is completely automated and very flexible. Finally, we prove that the closed loop control 
structure has very good inner robustness. 
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1. INTRODUCTION 
 
The implementation of advanced control strategies on 
real bioprocesses is difficult because of absence of 
reliable instrumentation. The performances of the 
control depend on the reliability of the model.  When 
some kinetic parameters are imprecisely known, it is 
necessary to design adaptive and/or robust 
controllers. An interesting approach has been 
proposed by Bastin and Dochain (1990) who 
designed adaptive controllers for bioreactors.  The 
design of stable and convergent nonlinear adaptive 
controllers for bioprocesses is a complex task. 
 
Another viable alternative can be the robust 
approach. The advantages are that one fixed 
controller structure apriori designed can be use for an 
entire class of plants nearby the nominal plant. Using 
a robust controller good results are obtained for 
parametric uncertainties or for variable delay in the 

plant model, which often characterize the recycle 
CSTB. 
 
The paper is organized as follows. In Section 2, the 
general dynamical model of the Continuous Stirred 
Tank Bioreactor is presented. Based on this model, a 
general control design architecture is analysed. 
Section 3 deals with the design and implementation 
of the H2-controller that makes use of the linearized 
model of the nonlinear plant model. In Section 4, the 
behaviour of the proposed controller is analysed. The 
robustness of the proposed control architecture is 
emphasized. Finally, Section 5 collects the 
conclusions. 
 
 

2. MATHEMATICAL MODEL OF THE CSTB 
 
A bioreactor is a tank in which several biological 
reactions occur simultaneously in a liquid medium. 
Bioreactors that operate in the continuous mode are 
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usually known as Continuous Stirred Tank 
Bioreactors. In a CSTB, the substrates (the nutrients) 
are fed to the bioreactor continuously and an effluent 
stream is continuously withdrawn such that the 
culture volume is constant. Often, a part of the 
biomass is recycled. To recycle, the biomass must be 
separated from the substrate and yield, then travel 
through pipes after separation. This time of recycle 
introduce delays in the states and complicates the 
dynamic. The benefits are that the recycle increases 
the overall conversion and reduces the costs. 
 
The dynamical state-space model of a 
biotechnological process in a CSTB expresses the 
mass balance of the components in the bioreactor 
(Bastin and Dochain, 1990): 
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where 21 , ξξ  represent the biomass and the limiting 
substrate concentrations [g/l]. Sin is the influent 
substrate concentration and D is so-called dilution 
rate [h-1], i.e. the specific volumetric outflow rate. In 
(1), (2) µ  is the specific growth rate and k1>0 the 
yield coefficient.  
 
In the CSTB with recycle stream, a part of the 
biomass is recycled. If the recycle occurs, then the 
bioprocess model (1), (2) must be rewritten 
(Selisteanu and Petre, 2001): 
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In (3) Dq)-(1 ⋅  is the recycle flow rate. The constant 
q varies from 0 to 1, with zero corresponding to total 
recycle and 1 to no recycle. The constant r is the 
recycle delay time and F

in
 is the input flow. A 

compact representation of the state- space model (3), 
(4) is: 
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where  [ ]T21ξξξ =   is   the   state   vector   and   the 
function ( )⋅f  is the nonlinear vectorial function 

[ ]T212211 ),(f),,(f)(f ξξξξξ =  . 
The equilibrium states of (3), (4) are of two types: 
 
1. Wash-out equilibrium states (E1), defined by: 
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2. Operational equilibrium states (E2), implicitly 
defined by: 
 

(E2) 




=+
=

in2s1s2s1s1

2s1s

FD),(k
qD),(

ξξξξµ
ξξµ

          (7) 

 
Equilibrium (E1) corresponds to the bioreactor wash-
out, therefore only equilibrium (E2) has a 
technological interest. We suppose that the form of 
the specific growth rate is the Haldane kinetic model 
that takes into account substrate inhibition on the 
growth 
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KM is the Michaelis - Menten constant, Ki the 
inhibition constant and 0µ  the maxim specific 
growth rate. 
 
From (7), if the specific growth rate is the model (8) 
we have two possibilities for the equilibrium (E2): 
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The case (a) corresponds to a stable equilibrium point 
(stable node). The case (b) leads to a saddle type for 
the equilibrium (E2) (see Selisteanu and Petre, 2001). 
 
The phase plane corresponding to the system (3), (4) 
for the values of the process parameters: 

,1k,l/g100K,l/g10K,h6
1iM

1
0 ==== −µ  

,h6.3D 1−=  Fin = 540 h-1 g/l, q = 0.8, r = 0.25 h 
and for different initial conditions is represented in 
Fig. 1. From this picture it can be seen that when the 
substrate inhibition appears, the process can exhibit 
unstable or, maybe worse, the evolution leads to 
wash-out steady-states, for which the microbial life 
has disappeared and the reactor is stopped. 
Furthermore, a bigger value for the delay time can 
induce a worst behaviour. Moreover, in many cases, 
the stable equilibrium point corresponding to (a) is 
not technological operable (requires a big initial 
amount of biomass). The conclusion is that for the 
CSTB with recycle stream it is necessary to design a 
control strategy.  
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Fig. 1. Phase plane of CSTB with recycle stream 
 
For control purposes, it is necessary to find the linear 
approximation of the system (3), (4) around the 
equilibrium point (E2). The goal of the control 
strategy is to stabilize the equilibrium point (10), 
which is interesting from technological point of view. 
 
 

2. H2 CONTROLLER DESIGN 
 
A general method it is considered for formulating H2 
control problem, which makes use of linear fractional 
transformation as introduced by Doyle and Stein 
(1981). The formulation makes use of the general 
two-port configuration of the generalized plant 
presented in Fig. 2.  
 

PW

K

w z
yu

 
Fig. 2. Two-port representation of control loop 
 
The overall control objective is to minimize the norm 
of the transfer matrix function from the weighted 
exogenous inputs w to the weighted controlled 
outputs z. 
 
The H2 optimal problem can be stated as 
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and is suitable for linear systems. Generally, if we 
consider w = {r, d, n} the exogenous input of the 
system (r for reference signals, d for disturbances and 
n for measurement noises), z = {z1, z2, z3} the quality 
output of the system and u the control input 
(controller output) and (y = e) the controller input 
(system error), we have the representation from Fig.3. 
W1, W2 and W3 are appropriate weighting functions, 
used in the controller design process (see Skogestad 
and Postlethwaite, 1995). We consider a general  
method of formulating control problem, which makes 
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Fig. 3. The H2 controller design architecture 

 
use of linear fractional transformation as introduced 
by Doyle and Stein (1981). The formulation uses the 
general two-port configuration of the generalized 
plant with a generalized controller. The classical 
control loop from Fig. 2 is equivalent with the so-
called two-port representation of the generalized 
plant from Fig. 3. 
 
In the next sections is used only the linearized model 
G of the nonlinear CSTB around the unstable saddle 
point (10), which has a reasonable biomass 
concentration 1ξ . Beginning with this linear model 
G, we shall derive the generalized plant PW from Fig. 
3. (called also the augmented plant) using the 
following general formulas: 
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The design of the H2 controller is based on this 
augmented plant transfer matrix PW(s). From (12) we 
can see that the augmented plant can be represented 
in state-space form as: 
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We can solve the H2-norm optimal control problem 
by observing that it is equivalent to a conventional 
Linear-Quadratic Gaussian optimal control problem. 
The H2 optimal controller K(s) is thus realizable in 
the usual LQG manner as a full-state feedback Kc and 
a Kalman filter with residual gain matrix Kf with 
following relations: 
a) Kalman Filter: 
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b) Full-state feedback: 
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Fig. 4. Specific H2 design architecture 
 
From (13) and (14) it can be observed that the 
controller order is the sum of the original plant order 
and the orders of each weighting functions. The 
controller and the augmented (generalized) plant have 
the same order. It is our interest, in order to obtain a 
low-order controller, to use scalar weighting 
functions or to use only W1 and W2 as in the specific 
case from Fig. 4. 
 
 

4. COMPUTER SIMULATION AND RESULTS 
 

4.1. Stabilization of the unstable saddle point 
 
For design the linearized plant model around the 
saddle point is used, which is the intermediate point 
between the wash-out and operational stable node. 
The saddle point used for linearization has the 
coordinates: 
 
  [ ] [ ]98.1442  64.8197,=21 ,ξξ          (15) 
 
and the operational stable node has the coordinates: 
 
  [ ] [ ]10.1891  174.7636,=21 ,ξξ   (16) 
 
The weighting functions have a great importance in 
the H2 controller design, being in fact the only design 
parameters. For example, using 
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good robustness behaviour of the controlled system is 
obtained. 
 
The main purpose of the control system is to conduct 
the operational point from the initial point to the final 
point, the stable node. From technological and 
economical reasons, the initial point has to be near to 
the origin in the phase plane from Fig. 1. In such 
case, without a control system, the plant will go into 
wash-out state. Using the designed H2 controller, we 
can start from the initial point 

  [ ] [ ]98.1442  14.8197,, *
2

*
1 =ξξ  

and obtain the following state response: 

 
Fig. 5. State response of CSTB 
 
It is clear that the plant functions in the unstable 
saddle point, starting with wash-out initial conditions. 
From this non-economical operational point, we can 
conduct the plant in another desirable operational 
point, applying steps on biomass reference. 
 

 
Fig. 6. Time evolution to the operational point 
 
4.2. Robustness against parametric uncertainty 
 
In the above simulation results, we considered no 
parameter uncertainty, so we assumed that the model 
parameters are identical with the real ones. We have 
to test the control system behaviour in presence of 
parametric uncertainty. For example, let’s take a 
variation of the parameter k1 (the yield coefficient), 
with nominal value 1. The following evolutions are 
obtained: 
 

 
Fig. 7. Time evolution for k1=0.1 
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Fig. 8. Concentrations profile for k1=1.2 
 
We may simulate multiple parameters variation, as in 
the next figure, first with two modified parameters 
and after with three modified parameters (Fig.9 and 
Fig. 10). 
 

 
 
Fig. 9. Time evolution for 2 modified parameters  
 

 
 
Fig. 10. Time evolution for 3 modified parameters  
 
4.3. Robustness against time delay 
 
The above simulations results used relations (1) and 
(2) for the plant model with no recycle stream. The 
last simulation results are focused on the time delay 
compensation, so we will use for simulation the 
mathematical model (3) and (4) of the CSTB with 
recycle stream. 
 
 

  
 
Fig. 11. Evolution of CSTB with recycle stream 
 

  
Fig. 12. Evolution for modified parameters. 
 
 

5. CONCLUSIONS 
 
In this paper a simple but efficient strategy for a 
CSTB with recycle stream control is proposed: the H2 
methodology for controller design. Starting with the 
nonlinear second-order model of the CSTB plant, the 
following design steps are proposed: 
 
- Obtain the linear model from the set of 

nonlinearly differential equation around the 
unstable saddle point 

[ ] [ ]98.1442  64.8197,=21 ,ξξ  
 

- Compute the H2 controller using appropriate 
weighting functions. In our case, we do not use 
W3 and W2 is chosen a scalar only for 
methodological reasons. 

 
- Test the control system behaviour for evaluating 

robustness performances. 
 
Following these steps, a third order SISO H2 
controller is founded, with very good robustness 
performances, which transformed the unstable saddle 
point into ordinary operational point. Using 
successive biomass reference steps, the operational 
point is conducted from the starting wash-out zone to 
the final stable node. 
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In order to prove the robustness capabilities, the 
following tests are proposed: 
 
- non-zero initial conditions response is stable in a 

large area around the linearization point (saddle 
point). 

 
- The H2 controller can compensate large 

simultaneous variations for different model 
parameters. 

 
- In presence of parametric uncertainties, the H2 

controller still ensures a good control for a large 
time-delay in the recycle stream. 

 
Finally, we have to explain why we choose the H2 
design procedure instead of LTR or ∞H , methods 
(see Stein and Athans, 1987; Chiang and Safonov, 
1992) recognized as robust techniques (Fig. 13). 
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Fig. 13. H2 and H ∞  optimization 
 

To understand the difference between the H2 and 
∞H , we note that the H2-norm is the Frobenius norm 

in terms of singular values. We see that minimizing 
the ∞H -norm corresponds to minimizing the peak of 
the largest singular value, whereas minimizing the 
H2-norm corresponds to minimizing the square of the 
sum of all singular values over all frequencies. 
 
Minimizing H2-norm often lead to a decrease of the 
peak of the largest singular value, which guarantees 
good robustness of stabilization and performances. 
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