
THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recomended for publication by S. Caraman
68

SUPERVISORY CONTROL TECHNIQUE FOR AN ASSEMBLY
WORKSTATION AS A DYNAMIC DISCRETE EVENT SYSTEM

Daniela Cristina CERNEGA and Viorel MÎNZU

“Dunarea de Jos” University of Galati, România
Str. Domneasca, No. 111, 6200 Galati, România

e-mail:Daniela.Cernega@ugal.ro, Viorel.Minzu@ugal.ro

Abstract. This paper proposes a control problem statement in the framework of
supervisory control technique for the assembly workstations. A desired behaviour of an
assembly workstation is analysed. The behaviour of such a workstation is cyclic and
some linguistic properties are established. In this paper, it is proposed an algorithm for
the computation of the supremal controllable language of the closed system desired
language. Copyright © 2001 IFAC.

Keywords: discrete event dynamic systems, assembly systems, supervisory control

1. INTRODUCTION

This paper deals with a control problem for an
assembly workstation using the supervisory control
technique proposed by Wonham et al (see Ramadge
and Wonham, 1987; Wonham and Ramadge, 1987;
Ramadge and Wonham, 1989).

To control an assembly system means to execute a
preplanned assembly process, taking into account the
mutual exclusion, the concurrence of tasks and the
cyclical usage of resources.

A supervisor is an automaton that is connected with
the controlled discrete event system. Therefore, a
closed loop system is formed. A desired behaviour of
the discrete event system may be expressed by
sequences of events, which form a language.
Generally, a supervisor that assures the desired
behaviour exists, if two conditions are met (see the
supervisor existence theorem presented in Ramadge
and Wonham, 1989). The first one is the Lm-closure
of the language mentioned before and the second is
its controllability.

Formal properties of a language that models the
behaviour of the assembly workstation as a discrete
event system (DES) are used in section 3 to define a
class of DES with cyclic working.

In section 4 is proposed an algorithm for the
computation of the supremal controllable language of
the closed system desired language and an example is
shown.

2. SUPERVISORY CONTROL PROBLEM

A discrete event system is a dynamic system with a
discrete state space. The time instants at which state
transitions occur are, in general, unpredictable
(Ramadge and Wonham, 1987).

The state transitions of a discrete event system are
determined by events. The occurrence times of the
events are ignored in order to simplify the models
considered in this paper, in which the timing
information is not crucial. In such models listing (in
order) the events that occur along the state trajectory
specifies a state trajectory. This lead to so call logical
DES models (Ramadge and Wonham, 1989), in

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

69

which the interest is oriented to the sequences or
strings of events that the process responds at. A
string of events leading to a specified state of the
system can be considered as an entry signal.
The set of all the physically possible sequences of
events indicates the possible behaviour of the
discrete event system. This behaviour can be
modelled with a formal language L.

The approach in supervisory control problem regards
the discrete event system to be controlled, i.e. the
'plant' in traditional control terminology, as a
generator, G, of the formal language L.

The generator G can be defined as an automaton:

G = (Q, Σ, δ, q0, Qm),
where Q is the state set,

Σ is a finite set of symbols referred as event
labels,

δ: Q×Σ → Q is (the partial) transition function
q0 is the initial state,
Qm ⊆ Q is the subset of marked states.

The marked behaviour of the generator G, Lm(G), is
the set of strings which lead to marked states.

Usually a controlled discrete event system has the
nonblocking property, i.e.)()(GG LLm = , where

)(GLm denotes the prefix closure of the marked
language Lm(G).

To control a DES it is necessary that certain events of
the system must be disabled (i.e. preventing from
occurring) when desired in order to influence the
evolution of the system by prohibiting the occurrence
of key events at certain times. To model such control
the set of events Σ is partitioned into controllable and
uncontrollable events i.e. Σ = Σc ∪ Σu. The events in
Σc can be disabled at any time, while those in Σu
model events over which the control agent has no
influence.

The aim of supervisory control is not to modify Lm,
but to achieve a prescribed language K ⊆ Lm(G) for
the system equipped with the supervisor forming
together the closed system.

Formally, a supervisor is defined in (Ramadge and
Wonham, 1989) as a map, f, specifying for each
string of events the control input to be applied at that
point. A supervisor may be also represented

(Wonham and Ramadge, 1987) as state realisation of
the map f which is a pair S=(S, Ψ) where S is an
automaton and Ψ is the command function.

In this paper the state realisation of a supervisor will
be called simply supervisor.

Hence, a supervisor is a “controller” that decides in
every state of the process (modelled as a generator)
which controllable event has to be enabled, and
which has to be prevented from occurring in order to
achieve the prescribed behaviour.

The prescribed language K may be specified directly
by giving the closed loop behaviour, or indirectly
through the specifications for the closed loop system.

The supervisory control problem will be considered
fully solved when it is shown a controller that forces
the specifications to be met, exists and it is
constructible.

In this paper the prescribed language, K, for the
closed system is called the admissible language.

The relation between the physically possible
behaviour of the process (L(G)) and the admissible
language denoted by La is shown in figure 1. A state
trajectory like "a" in figure 1 has to be prevented
from occurring using the control action.

The supervisor which is solution for the supervisory
control problem must ensure that the behaviour of the
closed loop system (the generator G equipped with
the supervisor S), denoted by L(S/G), is identical
with the prescribed admissible language La=K.

To apply supervisory control technique one needs
adequate models for controlled process expressed by
automata and/or formal languages.

3. ASSEMBLY WORKSTATION MODELS FOR
THE PURPOSE OF SUPERVISORY CONTROL

An assembly system is a manufacturing system,
which makes a product or a family of products
essentially by meeting parts. It is composed by
workstations, each one performing one or several
tasks.

To execute the preplanned assembly processes, a
control problem must be solved taking into account
the mutual exclusion of some tasks, their concurrent
execution, and so on. In order to solve a control
problem, the assembly system must be modelled as a
DES, considering all the aspects: parts, robots,
fixtures.

In this section, a systematic method to model
assembly workstations to be controlled is proposed.

L(G)

La

• x0

•
a

b
•

Figure 1 The formal languages L(G) and La

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

70

In order to obtain an assembly workstation model to
be used for the supervisory control problem, there are
some steps to be accomplished.

The construction of the assembly graph. In (Minzu
and Henrioud, 1993) the authors have proposed the
assembly graph as a model of the assembly process,
in the case of single product assembly systems. A
model of an assembly workstation using the
assembly graph was described in (Minzu and
Henrioud,1997). The advantage of using the
assembly graph consists in the correct definition of
tasks (both the base and the secondary parts are
defined) and in the systematic method for its
construction.

The construction of the activities-resources graphs.
In the assembly graph nodes represent tasks and
arrows represent the precedence relation between
them. Each task is performed by a resource. The
activities-resources graph is obtained adding the
resources sequences on the assembly graph as shown
by Mînzu and Cernega, 1999. Usually, the task
sequences are chosen in order to eliminate any
deadlock of the system. A resource is delivered to its
first task immediately after the completion of the last
task of its sequence. Hence, the resources have a

cyclic behaviour that determines the cyclic work in
the considered system.

The conversion of the activities resources graphs into
the Petri net. As a discrete event system, the
assembly workstation is better modelled like a Petri
net, because the prerequisites for the execution of any
task are more explicit.

In an assembly workstation the working is cyclic and
the achievement of the assembly product needs the
execution of all the tasks in the assembly
workstation. As a consequence the Petri net has a
specific property: when the state of the Petri net
comes back to the initial marking all the transitions
were fired.

The controlled Assembly Petri net is the result of
extending the obtained Petri net with external control
places. The control problem dictates the positions of
the control places.

For example, in figure 2 is shown a controlled Petri
net model for a specified control problem. Due to the
specifications process behaviour, the transition T2 has
to be a controllable transition. Its firing will be
determined with the marking of the control place Pc1.

P1

Figure 2. The controlled Petri net for an assembly workstation

T10

T12

T11

 T9

T8 T5

T6

T3

T2

T7 T4
T1

P19

P2

P5

P20

P4

P3

P14 P13

P15

P16 P17

P12

P11 P10 P9 P7

P6

P8

P18

Pc1

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

71

The controlled Petri net is converted into the
automaton that generates the physically possible
behaviour of the assembly workstation.

Each state of the automaton is a reachable marking of
the controlled Petri net. The events that generate
transitions correspond to the firing of the transitions
in the controlled Petri net.

The generator G of the physically possible behaviour
of the assembly workstation can be defined as:

G = (Q, Σ, δ, q0, Qm),
where:

Q is the set of states, each state is a reachable
marking in the controlled Petri net,

Σ = Σc ∪ Σu is the set of events, each event is a
transition of the controlled Petri net and the

controllable events are corresponding to the
controlled transitions,

δ is the transition function defined in accordance
with the transitions between the reachable
markings of the controlled Petri net

q0 is the initial state corresponding to the initial
marking,

{Qm} = q0 is the single marked state which
corresponds to the end of a job in the assembly
workstation: in this state a product of the
assembly workstation is accomplished.

For example, the generator for the assembly
workstation corresponding to the Petri net in figure 2
is shown in figure 3.

The systematic method presented above leads to an
automaton, which is an adequate model to be used in
the supervisory control problem.

For an automaton G modelling a system with cyclic
working one can remark that the elements of the
marked language, Lm(G), are the strings of events
which determine transitions from the marked state to
the marked state. Such an element of the marked
language is called cyclic sequence. A cyclic sequence
containing every transition at most once it is called
minimal cyclic sequence.

A minimal cyclic sequence for the generator of the
behaviour of the assembly workstation contains all
the events (transitions of the Petri net), the difference
between two minimal cyclic sequences is the order of
the occurrence of the events.

For example, the automaton shown in figure 3 has 55
minimal cyclic sequences.

The set of minimal cyclic sequences for an
automaton with an unique marked state is:

S = {si| i.e. q0  → is q0 }.

For the example considered above the marked
language can be defined using the minimal cyclic
sequences:

Lm(G) = (s1 + s2 + … + s55)*.

A class of DES with cyclic working may be
considered to have a single marked state and the
initial state identical with the marked state. The
generator G of the assembly workstation belongs to
this class of DES.

We can define an automaton type called AWM
(Assembly Workstation Model) to characterise all the
discrete event systems which have the same
characteristics defined above.

Definition 1
An automaton M defined by:

M = (Q, Σ, δ, q0, Qm),
is called AWM (Assembly Workstation Model) if:

- every state of the set Q is accessible and
coaccessible (i.e. each state is accessible through a
string which can be continued to the marked state);
- it has an unique marked state (Qm = {qm})
identical with the initial state (qm = q0);
- every minimal cyclic sequence contains all the
events in Σ;

q25

Figure 3 The transition graph for the generator of the considered assembly workstation

T5 T4

q0

T1
q1

q2

T4

T1
q3

q4

T7

T7

q5

T5 q7
q10

T5

q8

q11

q9
q14

q15

q16

q17

q6

q12

q13

q19

q18

q20 q21

 q22 q23
q24 T7

T11 T10 T6
T9

T3 T9

T3
T2

T2

T1
T8

T8

T8
T1

T9

T5

T9

T9
T1 T5

T2

T2

T8

T7

T3
T7

T3
T8

T12

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

72

- any cycle contains the initial state.
The AWM type automaton is a model for an assembly
workstation.

For a given assembly workstation (L(G)) usually the
are some specifications to be met during the
execution of the assembly process. These
specifications lead to the admissible language (La =
K) to be achieved by the controlled system.

There exists a supervisor to ensure the closed loop
admissible behaviour described through the formal
language K ⊂ Lm(G) if and only if (as stated in the
general existence theorem in Wonham and Ramadge,
1987):
- K is Lm-closed (i.e. K ∩ Lm(G) = K, where K is the
prefix closure of K)
- K is controllable (i.e. K Σu ∩ L(G) ⊆ K).

For an assembly workstation regarded like an AWM
automaton (Mînzu and Cernega, 1999) was proposed
a criterion for the Lm-closure.

If the closed loop desired language K is Lm-closed it
only remains to verify its controllability. If K is not
controllable it will be computed the greatest
controllable language included in K which is called
the supremal controllable language (supC(K)) of K.

In the next section we propose an algorithm used for
the computation of the supremal controllable
language for AWM type models.

4. ALGORITHM FOR THE COMPUTATION OF
THE SUPREMAL CONTROLLABLE LANGUAGE

FOR AWM AUTOMATA

Let K0 be the admissible closed loop behaviour for an
AWM type automaton G with the possible behaviour
L(G) and the marked behaviour Lm(G).

The computational algorithm proposed in this section
uses the new concepts of restriction of automaton in
relation with another automaton and uncontrollable
state defined below.

Definition 2
The automaton B = (Σ, XB, ξB, x0, Xm) is called the
restriction of the automaton A = (Σ, XA, ξA, x0, Xm),
if the following two conditions are met:

i) XB ⊂ XA,
ii) ξB (σ, x) = ξA (σ, x), ∀ x ∈ XB and ∀ σ∈Σ, for
which ξA (σ, x) is defined.

Remark that the automaton B is a restriction of the
automaton A and the transition function ξB is a
restriction of the transition function ξA.

Definition 3

Let the two automata A = (Σ, XA, ξ, x0, Xm) and
B=(Σ, XB, ξ, x0, Xm), so that the automaton B is a
restriction of the automaton A. A state x∈ XB from
the automaton B is called uncontrollable state of the
automaton B in relation with the automaton A if the
following condition is met:

∃ u∈Σu a.î. ξΑ(u, x) ∈ XA – XB.

If the automaton A represents the physically possible
behaviour of the system and B represents the
admissible behaviour, an uncontrollable state has the
meaning of a state from which the admissible
behaviour can be exceeded when an uncontrollable
event occurs. Hence an uncontrollable state
corresponds to the case in which the violation of the
constraints can not be prevented from occurring
using control action.

Let S0 be the automaton identical with the generator
G defined as follows:

S0 = (Σ, X0, ξ0, qm, {qm}),
where X0 = Q,

ξ0 ≡ δ.

Algorithm SCAW (Supremal Controllable for
Assembly Workstation)
Step1. It is constructed the recogniser S1 for the
language K0 ⊂ Lm(G) defined by:

S1 = (Σ, X1, ξ1, qm, {qm}).
Step 2. i = 1
Step 3. It is computed iC the set of uncontrollable
states of Si in relation with Si-1.

If iC ≠ ∅ , then go to Step4.
else S:= Si and STOP.

Step 4. It is constructed the automaton Si+1 by
removing from Si the uncontrollable states and the
transitions to them. The automaton Si+1 is defined by:

Si+1 = (Σ, Xi+1, ξi+1 , qm, {qm}), where
Xi+1:= Xi - iC .

The automaton Si+1 is a restriction of Si.
Step 5. If Xi+1 ≠ ∅ , then i:= i +1 and go to Step 3;

else STOP.

Remarks
1. If the language K0 is controllable the algorithm
stops at Step 1.
2. Due to the iterative work of the algorithm every
automaton Si+1 is a restriction of the automaton Si
computed by the previous iteration, Si+1 is a
restriction of S0.
3. If the algorithm stops at Step 5 there is no
controllable language included in K0.

The next theorem proves that the result of the
proposed algorithm is the supremal controllable
language.
Theorem 1

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

73

For the AWM type automaton G and a given language
K0 ⊂ Lm(G) the automaton S witch is the result of the
algorithm SCAW is the recogniser of the supremal
controllable language of K = supC(K0).
The proof of the theorem shows that K is a
controllable language and there is no controllable
language larger than K in K0.

Let us consider the generator G for an assembly
workstation presented in figure 3 where the
controllable subset of events is Σc = {T1, T8}.

A supervisory control problem for this DES asks to
design a supervisor to ensure that the states q9 and q14
will be never reached.
Such a supervisor exists if the language of
specifications K0 is Lm-closed and controllable.

A generator S1 for K0 given above through the
specifications is shown in figure 4.

The language K0 is not controllable.The supremal
controllable language of K0 is computed with the
algorithm SCAW.

The result of the algorithm is the automaton S3,
shown in figure 5, which is the recogniser of the

supremal controllable language of K0.

5. CONCLUSION

In this paper, a control problem for assembly
workstations was presented. A systematic method to
obtain an adequate model for the supervisory control
problem for an assembly workstation was proposed.
This method uses the assembly graph as the starting
point and leads to the automaton or the formal
language.

It was defined a class of discrete event systems with
cyclic working, called AWM type automaton, which
have the same characteristics with the assembly
workstation.

The supervisor existence conditions for AWM type
automata can be verified using specific methods for
this class of DES.

A Lm-closure criterion for the admissible language
for AWM type automata was proposed in a previous
paper (Mînzu and Cernega, 1999).

An algorithm for the computation of the supremal
controllable language of the admissible language was
proposed in this paper. This algorithm can be used as
a tool to verify the condition of controllability of the
admissible language.

Figure 4. The transition graph of the automaton S1

T5 T4

q0

T1
q1

q2

T4

T1
q3

q4

T7

T7

q5

T5 q7
q10

T5

q8

q11

q15

q16

q17

q6

q12

q13

q19
q18

q20 q21

 q22 q23 q24
T7

T11 T10 T6
T9

T3 T9

T3
T2

T2

T1
T8

T8

T8
T1 T9

T5

T9

T9
T1 T5

T2

T2

T8

T7

T12

q25

Figure 5. The automaton S3

T5 T4

q0
q2

q4 T7

q15

q16

q17

q6

q12

q13

q19

q18

q20 q21

 q22 q23 q24
T11 T10 T6

T9

T3 T9

T3

T8
T1 T9

T5

T9

T9
T1 T5

T2

T2

T12

q25

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

74

REFERENCES

Charbonnier F.(1996). Commande supervisée des
systèmes à événements discrets. Phd Thesis,
INPG, Grenoble, France.

Ramadge P. J., Wonham W. M. (1997). Supervisory
Control of A Class of Discrete Event Processes.
In SIAM J. Control & Optimization. Vol.25,
No.1, pp.206-230.

Wonham W. M., Ramadge P. J. (1987). On the
Supremal Controllable Language of a Given
Language. In SIAM J. Control & Optimization.
Vol.25, No.3, pp.637-659.

Ramadge P. J., Wonham W. M. (1989), The Control
of Discrete Event Systems.In Proceedings of the
IEEE. Vol 77, no 1.

Suzuki T., Kanehara T., Inaba A., Okuma S.(1993).
On Algebraic and Graph Structural Properties of
Assembly Petri Net. In IEEE Proceedings
International Conference on Robotics and
Automatics, pp 507 – 514.

Mînzu V., Henrioud J.M. (1993). Systematic Method
for the Design of Flexible Assembly Systems. In
Proceedings of IEEE International Conference
on Robotics and Automation. Atlanta-USA.

V. Mînzu, J.M. Henrioud (1997). Approche
systématique de structuration en postes des
systèmes d'assemblage monoproduits; In Journal
Européen des Systèmes Automatisés. Vol.31,
No.1/1997, p57-78; HERMES ISSN 0296-1598.

Mînzu V., Cernega D.C. (1999). Supervisory
Control Technique for Assembly Workstation.
In Proceedings of IEEE International
Symposium on Assembly and Task Planning
ISATP'99, pp88 - 93 Porto, Portugal.

