
THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recomended for publication by S. Bumbaru
92

INTEGRATING HYPERMEDIA OBJECTS IN AN INTELLIGENT
TUTORING SYSTEM

Emilia PECHEANU, Diana STEFANESCU, Sabin Corneliu BURAGA†
Adrian ISTRATE

Department of Computer Science and Engineering
University "Dunarea de Jos" of Galati–Romania

e-mail: Emilia.Pecheanu@ugal.ro, Diana.Stefanescu@ugal.ro
†Faculty of Computer Science

University "A.I.Cuza" of Iasi-Romania
e-mail: busaco@infoiasi.ro

Abstract: The paper describes the internal architecture of an Intelligent Tutoring System, CS-
Tutor. The architectural design of the tutorial system was developed in a collaborative work at
the Department of Computer Science of the University of Galati and the Department of
Applied Informatics of the Faculty of Computer Science of Iasi. Intelligent Tutoring Systems
(ITS) are software packages which use the Artificial Intelligence techniques to aid in learning
of some subject or skill. In recent years, Hypermedia has been gained the interest of many
researchers working in the teaching field of study. The CS-Tutor internal architecture is based
upon integrating Hypermedia Objects in an Intelligent Knowledge-Based frame.

Keywords: Pedagogical Model, Hypermedia Object, Pedagogical Unit.

1. INTRODUCTION

The authors of this paper have been jointly working
on a project of designing the architecture of an
instructional system, CS-Tutor, using both intelligent
tutoring methods and hypermedia technologies. The
migration of hypermedia toward intelligent
hypermedia obviously meets the specific
requirements of the learning process, such as student
modeling, student diagnosis and learner guidance in
his investigation paths.

The goal of the project developed at Department of
Computer Science was to design an instructional
environment that will take advantage of integrating
hypermedia objects into an intelligent knowledge-
based system architecture.

The CS-Tutor system can be used to teach the
curricula of the Computer Science specialization
(Bumbaru, 1996), in order to provide on-line

extensive learning assistance for the engineering
graduate and postgraduate students.
The tutorial is conceived to be a colection of related
lessons (or pedagogical modules). The lessons will
consist of theoretical components including different
simulations (animated images, Java applets) and
testing exercises. Lessons and testing exercises will
be presented to the user as a sequence of Web pages.

The Web pages forming lessons can include text,
examples, images/animated images, diagrams and
links to related information. The testing components
will perform the assessment of students' knowledge
level and can turn into a tool for improving the
quality of the instructional process (Razmerita,
1997).

While designing the tutorial architecture the authors
used a knowledge based aproach for building the
kernel components of the system: the Domain Model,
the Student Model and the Pedagogical Model.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

93

The knowledge based approach includes the
following design principles :
− Represent instructional content and instructional

strategies separately.
− Explicitly represent abstract pedagogical entities.
− Design at the pedagogical level, as opposed to

the media level, when possible.
− Modularize the instructional content for multiple

use and re-use.
− Create generic teaching strategies that can be

used with different instructional content.
Designing tutoring systems in this way can grant
many advantages over the traditional CAI systems
design paradigm (Murray, 1988).

2. THE INTERNAL ARCHITECTURE OF THE
TUTORING SYSTEM

An Intelligent Tutoring System (ITS) is composed of
four major components: the Domain Module, the
Student Module, the Pedagogical Module, and the
Interface Module (Figure 1).

The Domain Module is the main core of the
instructional system. It contains representations of
the knowledge which is to be communicated to the
student, including descriptions of the various
concepts and skills of an expert in a particular
domain. The Domain Module provides the source of
knowledge to be presented, as well as explanations of
concepts or responses to students' tasks.

The Domain Module serves also as a standard for
student evaluation. The Domain Module can be
thought as a component manipulating a data
structure, the Expert Model, or as a dynamic vision
of the domain knowledge.

The Student Module contains information about the
student's understanding of the domain knowledge.
The Student Module dynamically builds a model of
how students learn and use the diagnostic tools
contained within the Pedagogical Module. This
model is permanently up to date in order to extract
the learner's knowledge state related to the subject
taught. Through inference capability, the Student
Module is able to produce an interpretation of the
student's actions and to reconstruct the knowledge
that led to these actions.

The Student Module can determine, from explicit
representations, the incorrect interpretations of the
target knowledge, so that remedial actions can be
taken. Inferential (excluding student input) and
interactive (student and ITS dialog) diagnostic
approaches can be used to provide diagnosis of
student learning efforts. The Student Module may be
thought of as manipulating a data structure called the
Student Model, a dynamic vision of the student's
knowledge of the domain. The student model is
"runnable" or "executable", so that predictions about
a particular student in a particular context can be
made.

Fig. 1. The Architecture of an Intelligent Tutoring System

The Domain
Knowledge-Base
(Facts and Rules)

The Inference
Engine

The Domain Module

The Pedagogical
Knowledge-Base
(Facts and Rules)

The Inference
Engine

The Pedagogical Module

The Student
Knowledge-Base

The Inference
Engine

The Student Module

The
Interface
Module

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

94

The Pedagogical Module contains rules or other
decision making tools that allow it to judge how well
the student's understanding of the subject domain (as
represented by the Student Model) matches actual
knowledge structure (as represented by the Expert
Model). It may then generate correct forms of
instruction or remediation to be given to the Interface
Module.

The Interface Module presents the user with a
uniform environment within which instruction,
diagnosis, remediation, and user driven learning may
take place.

The classical architecture of an Intelligent Tutoring
System (shown in Figure 1) was considered in CS-
Tutor in a different approach, in order to enable the
integration of the multimedia and hypermedia
elements. As a result, an object-oriented formalism
was adopted in building the Interface Module of CS-
Tutor system.

As a first level of decomposition, the tutorial system
architecture was split in three logical levels (see
Figure 2): Presentation Level (i.e., Level 1),
Hypermedia Level (i.e., Level 2) and Intelligent
Tutoring Level (i.e., Level 3) (Stefanescu, 1996).

The Presentation Level is devoted to describe the
content of multimedia interactive objects as they will
be shown to the learner on his workstation, and how
each object will interact with the learner.

The Hypermedia Level permits sequencing and
navigation through these interactions, taking into
account the learner’s input.
The Intelligent Tutoring Level uses Artificial
Intelligence techniques to meet the general
requirements of intelligent tutoring systems.

Levels 1 and 2 are a collection of autonomous and
active objects with related services; each object is an
instance of a related class. All classes and meta-
classes are predefined and independent from a
specific learning application.

For Level 3, three main components are highlighted:
the Domain Module, the Student Module and the
Pedagogical Module. Each component, as a
collection of rules and facts conforming to the
declarative approach, can do specific services
without any ad hoc functions.

During the courseware execution, levels components
interact between them by means of message sending,
for services invocation. A Level component (i.e.,
object of the two bottom levels or a rule of Level 3)
has to send a specific message, to an object for a
services activation. Then the receiver replies with a
report witch carries the relevant results of the service
activated. Messages are generally propagated from
higher levels to lower levels and reports in the
reverse way.

Fig. 2. Levels of the Tutoring System

Intelligent
Tutoring

Hypermedia
(Hyper Objects)

Presentation
(Presentation Objects)

Level 3

Domain
Module

Student
Module

Pedagogical
Module

Level 2

Level 1

Interface
Module

Messages

Messages

Reports

Reports

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

95

3. THE COMPONENTS OF LEVEL 1 AND 2 OF
THE TUTORIAL SYSTEM

Level 1 of the CS-Tutor system is composed by
Presentation Objects. A Presentation Object is an
elementary information to be used through the
learner-computer interface.
The Presentation Level is composed by several
Presentation Objects, that can be used or re-used
during the learner-computer interactions.
The services provided by a Presentation Object can
be described as follows: in reply to an invocation
from higher levels, the Presentation Object restitutes
the presentation contents back to the calling Hyper
Object for a further analysis.

Level 2 of the is tutoring system consists of a
collection of Hyper Objects. The purpose of an
Hyper Object is mainly to decide what will be the
next learner-computer interaction, taking into
account the current results of the interaction and the
pedagogical goal. Like in hypermedia systems,
Hyper Objects are structured as nodes of a network
(see Figure 3). Four kinds of Hyper Objects can be
distinguished in Level 2:
- Learning Unit: it is an Hyper Object of an output

kind, giving information about what is to be
taught. It may be an example, an hint or an
explanation about a domain concept.

- Solicitation Unit: it is an Hyper Object of an

input kind, devoted to assess the learner’s
comprehension about what is already taught; it
may be a simple question, an exercise, or a
problem to solve. Author’s expected responses,
wich are objects too in our architecture, are
attached to a Solicitation Unit. A Solicitation
Unit refers to several Presentation Objects from
Level 1.

- Pedagogical Module: it is an Hyper Object

consisting of a collection of relevant and
organized Learning Units and/or Solicitation
Units; a Pedagogical Module is an object
specialized in teaching a specific domain
concept.

- Link Object, wich connect two Hyper Objects; a

Link Object is activated when the attached
conditions are true; Link Objects in Level 2 are
considered as static links in the tutoring system

Hyper Objects are entities wich are involved when
results of input data come back from the Presentation
Objects. Hyper Objects can provide two main
services:
- Analysis of input data, made by the current

Solicitation Unit, in comparison with expected
response objects. These latter may be either
stored beforehand by the author or calculated
dynamically by Level 3.

- Decision making, based upon user behavior:

- Local decision: what will be the next
Learning Unit or Solicitation Unit following
the current one in the current Pedagogical
Module. This kind of decision is made by
the current Solicitation Unit as looking for
the Link Object which activation conditions
are true.

- Global decision: when a Pedagogical

Module is finished, the next Pedagogical
Module is chosen. Which one is chosen
depends upon the learner’s behavior to all
solicitations in the current Pedagogical
Module. This decision is made by the
current Pedagogical Module as looking for
the Link Object which activation conditions
are verified.

A teaching domain concept is either factual (i.e.,
factual knowledge) or procedural (i.e., exercise,
problem to solve). The section of courseware which
is centered around a domain concept is the
Pedagogical Module.
A Pedagogical Module is represented by an Hyper
Object in level 2 entailing both statistics about the
learner’s behavior toward the module and a method
to make global decision. A Pedagogical Module is
also represented by some knowledge in Level 3.

From the learner’s point of view, a courseware may
be seen as a sequence of Pedagogical Modules. A
Pedagogical Module is seen as a sequence of
Pedagogical Units and Solicitation Units.
A Pedagogical Unit is a learner-computer interaction,
which may be either an explanation (i.e., Learning-
page), an example shown to a learner, and a
Solicitation Unit can be an exercise or a problem to
solve the related concept. From the system’s point of
view, a Pedagogical Unit is seen as a vertical section
of the architecture.

One can observe that Level 2 (Hypermedia) and
Level 3 (Intelligent Tutoring) of the system have
some common services, such as the analysis of input
data and making local or global decision, but
implemented in different ways. An Hyper Object
provides these services only if the expected learner’s
response is received and the static link is foreseen by
the author. In this case, the current Hyper Object has
the ability to make decision without involving the
Intelligent Tutoring Level, which is only informed of
the student’s response, in order to update the Student
Model. Otherwise, Level 3 (i.e., the Intelligent
Tutoring Level) is the only means to deal with
dynamic and unexpected responses (i.e., dynamic
link). Thus, when the Hyper Object discovers, after
analysis, that the response is unexpected, it will
forward the learner response to the Intelligent
Tutoring Level for diagnosis and decision making.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

96

Fig. 3. The Learner and System views of the courseware

4. LEVEL 3 OF THE TUTORIAL SYSTEM

Level 3 of the CS-Tutor was designed in a special
architecture, significantly different from the classical
architecture of an Intelligent Tutoring System (ITS).
The three components of an ITS: Domain Module,
Student Module and Pedagogical Module were
reunited in an unique intelligent layer of the
instructional system.
This layer becomes Level 3 of the Cs-Tutor
instructional system.

Level 3 of the of CS-Tutor system was then divided
in two major parts: the Local Knowledge-Base
(LKB), describing the behavior of the learning during
a transaction (answers, timing, learner’s choices) and
the Global Knowledg-Base (GKB), defining the
transmission of information, that is to say, the
author’s model.

Level 2 (Hypermedia) in Learner view: Learning Units, Solicitation Units and Pedagogical Modules

Domain Module

Pedagogical
Module

A Pedagogical Module is
centered on a domain

concept

Learning Unit
(LU)

SU

Solicitation
Unit (SU)

SU

LU

LU

LU
SU

Pedagogical
Module (PM)

Level 3

Level 2

Level 1

A Pedagogical Module structure in System view

Presentation Object

Presentation Object Presentation Object

Link Object

Student Module Pedagogical Module

PM

PM

PM

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

97

Fig. 4. The Local and Global Knowledge Base of the tutoring system

Several Local-Knowledge-Bases were associated
with a Pedagogical Module, each of them defining
the behavior for the instructional system, accordling
with the targeted pedagogical goal (see Figure 4).

Local Knowledge-Base (LKB) should include the
knowledge which is specific to a Pedagogical
Module: domain facts pre-stored by the author or set
dynamically by the domain expertise when an
exercise is made up. The facts are used to select rules
from the Global Domain Knowledge-Base and to
activate them in order to solve the specific exercise
or problem tackled in that Pedagogical Module. LKB

may include results of interactions such as the
student’s response, delay of time of response, type of
response. These latter facts are instantiated when the
response comes back from the Hyper Object. LKB
may include specific rules too, represented as a
temporary working-memory.

When the Pedagogical Module is deactivated, some
of its knowledge (e.g., student’s response) are
included in the Global Knowledge-Base (GKB), in
the sense to be exploited by the following
Pedagogical Module for diagnosing or making
decision. Global Knowledge-Base (GKB) includes

Presentation
Object

Pedagogical
Module

Local Knowledge
Base

Rule Base

Fact Base

PO

PO

PO

Level 3

Level 2

Level 1

Presentation
Object

Pedagogical
Module

Local Knowledge
Base

Rule Base

Fact Base

PO

PO

PO

Level 3

Level 2

Level 1

Presentation
Object

Pedagogical
Module

Local Knowledge
Base

Rule Base

Fact Base

PO

PO

PO

Level 3

Level 2

Level 1

Link
Object

Link
Object

Learner Modeling

Domain Knowledge

Teaching Strategies

Fact Base Rule Base

Intelligent Tutoring Level

Global Knowledge Base

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

98

rules and facts, about the domain knowledge, the
student model and the didactic strategies, witch are
shared by all pedagogical units. GKB contains:
- Predefined learning paths which define both

synchronized stages in the presentation of
knowledge and control of these stage which
adapts the system according to the student’s
behavior;

- Dynamic paths, that provide a remedy for
learning problems which cannot be resolved by
predefined learning paths.

5. THE NEED FOR A DOMAIN CONCEPTUAL
STRUCTURE

One of the problems with Hypermedia for
educational applications is that the learner needs to
have a good conceptual map of the domain being
taught, in order to effectively use the system.

The conceptual map should implement the hierarchy
of concepts of the domain knowledge. The domain
knowledge concepts can be represented in a semantic
net architecture, consisting of conceptual nodes and
relations between nodes (see figure 5).

In our framework the creator of the hypermedia
courseware needs to carry out the following steps:
- Create a concept hierarchy for the domain being

taught. This would involve analysis of the
domain to determine these concepts.

- Develop hypermedia material corresponding to
that concept. The hypermedia architecture uses
typed links such as those found in semantic
networks. Types include, is-a (ISA), which
represents class definition; a-kind-of (AKO),
which represents membership of and inheritance
from superclasses; has-a (HA), relating an object
to an attribute or property and part-of which is
used to show how an object is composed from
smaller parts. A hypermedia system built using
such link types provides a simple knowledge
base about the domain and such a knowledge
base may be used to reason new links
automatically by utilising automatic reasoning
algorithms.

Implementing various domains in the proposed
system would require some effort from the domain
author in that it is necessary to think about the
domain carefully in order to produce the correct class
nodes and correct links types.

Fig. 5. A semantic net of concepts for the Operating Systems discipline.

6. CONCLUSIONS

The framework for the instructional system that we
designed will join the Artificial Intelligence

Micro-
Kernel

Library of
functions

Ierarchical
Virtual

Machine

Ms-DOS

Client-
server

WINDOWS

Concentric
levels

Layered

CME

Distributed

ExoKernel

MULTICS

THE

AKO
AKO AKO

AKO
AKO

ISA

AKO

AKO

AKO
AKO

ISA

ISA

ISA

ISA

ISA

Has-A

Predicative
relationship

UNIX

Operating
Systems

Monolitical

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 2000 ISSN 1221-454X

99

technologies with the object oriented capabilities in
storing and managing structured data. This can lead
to multiple advantages in exploiting, maintaining and
updating the computer-aided instructional system,
offering a higher degree of generality in
implementing and using the CS-Tutor system.

On the other hand, the knowledge-based aproach,
that we used for designing the top level of the
system, can provide more dynamic learner-computer
interactions, and can adapt the sytem behavior to the
needs of each individual learner.

REFERENCES

Bumbaru, S.; Stinga, O.; Pecheanu, E.; Dumitriu, L.
and Tudorie, C. (1996). A CBTS built upon
Oracle RDBMS, Proceedings of The 3-rd East-
West Congress on Engineering Education,
Gdynia, Poland

Murray, T. (1988), Authoring Knowledge Based
Tutors: Tools for Content, Instructional Strategy,
Student Model, and Interface Design, Journal of
the Learning Sciences, Prentice Hall, New York.

ElHani O. and Gouarderes G. (1992). Standardized
Architecture for Integrated Open Courseware,
Lecture Notes in Computer Science, 602, pp.
198-211

Razmerita, L.; Stefanescu, D.; Bumbaru, S. and
Istrate, A. (1997), Student testing and assessment
in Computer Based Training Systems,
Proceedings of The 4-th International
Conference Computer Aided Engineering
Education, Krakow, Poland, pg. 223-231

Stefanescu, D., Bumbaru, S. and Ariton, V. (1996),
Hybrid Systems for Assisted Learning,
Ptocedings of The 9-th Symposium on Modelling,
Simulation and Identification Systems, SIMSIS
’96, pg. 372-381

