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Abstract: This paper deals with the modelling of a particular class of manufacturing 
lines, governed by a decentralised control strategy so that they balance themselves. Such 
lines are known as “bucket brigades” and also as “TSS lines”, after their first 
implementation, at Toyota, in the 70’s. A first study of their behaviour was based upon 
modelling as stochastic dynamic systems, which emphasised, in the frame of the so-
called “Normative Model”, a sufficient condition for self-balancing, that means for 
autonomous functioning at a steady production rate (stationary behaviour). Under some 
particular conditions, a simulation analysis of TSS lines could be made on non-linear 
block diagrams, showing that the state trajectories are piecewise continuous in between 
occurrences of certain discrete events, which determine their discontinuity. TSS lines 
may therefore be modelled as hybrid dynamic systems, more specific, with autonomous 
switching and autonomous impulses (jumps). A stability analysis of such manufacturing 
lines is allowed by modelling them as hybrid dynamic systems with discontinuous 
motions. 

 
Keywords: production systems, self-organising systems, hybrid dynamic systems, 
convergence analysis. 
 
 
 
 

1. INTRODUCTION 
 
The idea of bucket brigades was first implemented in 
the 70’s, in order to increase flexibility of different 
production lines, especially when products have 
extreme seasonalities or short life-cycles. The 
Toyota Sewn Management System (TSS), registered 
trademark of Aisin Seiki Co. Ltd., a subsidiary of 
Toyota, was the first case putting into practice a way 
of organising workers on a flow line so that the line 
balances itself. Workers, fewer than workstations, 
are allowed to walk to adjacent workstations to 
continue work on an item, each of them 
independently following a simple rule – the TSS 
Rule – that determines what to do next. 
 

TSS lines have offered a new way of organising 
work on a production line, as an alternative to the 
traditional point of view, such as classical assembly 
line, where the station with the greatest work content 
determines the production rate. Opposite to the strict 
assignment of equipment and tasks to workstations, 
the well-known concept of “workstation” is given a 
new meaning, as the equipment are, in fact, human 
operators, which are not strictly assigned to certain 
workstations, but can move among them. 
 
Flow manufacturing lines can be found wherever 
“products” may be imagined to move along, from 
worker to worker, for example, as in an assembly 
line: products are progressively assembled as they 
move down the line toward completion. When 
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following the TSS Rule, a flow line is spontaneously 
maximally productive and autonomously maintains 
its optimal production rate, without any conscious 
intervention. The self-balancing emerges like an 
intrinsic property of the line, avoiding a solution 
based on the assembly line balancing (ALB) 
classical problem. As it is known, this problem is 
NP-complete. The cycle time of the line – the most 
used optimisation criterion in ALB approach – is in 
this case implicitly minimised. 
 
An instance of the product is called an item. Each 
worker has an index, as higher as he is closer to the 
end of the line. A workstation can process at most 
one item at a time, requiring precisely one worker to 
perform the processing. Workers move according to 
the TSS Rule: 
 
Forward part – Remain devoted to a single item and 
process it on successive workstations (where at any 
station the worker of higher index has priority). If 
your item is taken by your successor (or if you are 
the last worker and you complete processing the 
item), then relinquish the item and begin to follow 
the backward part. 
Backward part – Walk back and take over the item 
of your predecessor (or, if you are the first worker, 
pick up raw materials to start a new item). Begin to 
follow the forward part. 
 
Two aspects may be noted about the TSS Rule: (1) a 
worker can be blocked during the forward phase, if 
trying to enter an occupied station, and (2) during 
the backward phase, each worker must, in fact, 
interrupt his predecessor and take over his work. 
 
Different approaches of particular flexible lines, 
quite close to the logic of a TSS line, can be 
encountered in the literature. It is shown that TSS 
lines regarded as dynamic systems can have very 
complicated and even chaotic behaviour (Yoshida, et 
al., 1983), and that is why they were primarily 
treated under some simplifying but quite realistic 
assumptions. The implications of using human 
operators – such as motivation, mentality, 
responsibility of workers – have been ignored in a 
first modelling approach, considering that this would 
pointlessly complicate the model. Identifying 
workers with workstations, some authors propose 
that line balancing be achieved by clever 
management and work-in-process inventory 
(Ostolaza, et. al, 1990), whereas some simulation 
studies use a simple model of workers, where all are 
identical and proceed at a single common velocity 
across all stations. Having also assumed that the 
processing time at each station is normally 
distributed about its mean, a linear deterministic 
average behaviour of the line is obtained, 
emphasising the convergence of state trajectories – 
as defined below – to a fixed point (Schroer, et al, 
1991). 
 

Nevertheless, it is more realistic to consider each 
worker as a working velocity function depending on 
his position on the line. Based upon this assumption 
– and on other assumptions, forming together “The 
Normative Model” – the modelling of TSS lines as 
stochastic dynamic systems has allowed to establish 
a sufficient condition for obtaining a stationary 
behaviour, that is a steady production rate (Bartholdi 
and Eisenstein, 1996a). Thus, it has been proved that 
a bucket brigade production line is spontaneously 
maximally productive if workers are sequenced from 
slowest to fastest. This yields a stable partition of 
work, corresponding to a fixed point in the system’s 
state space. The same authors studied some practical 
implications of bucket brigades (Bartholdi and 
Eisenstein, 1996b), as well as all possible asymptotic 
behaviour of lines with two or three workers, each 
characterised by a constant work velocity (Bartholdi, 
et al., 1999c). 
 
In a recent work, simulations carried out on non-
linear block diagrams have shown that the 
simplifying assumptions of The Normative Model 
induce the discontinuity of the state trajectories, due 
to occurrence of certain discrete events (Bratcu and 
Mînzu, 1999). Two hybrid phenomena were 
identified. Therefore, it has appeared necessary to 
reconsider the modelling approach in order to embed 
both the continuous behaviour and the impact of 
discrete events, that is to regard the TSS lines as 
hybrid dynamic systems. According to the taxonomy 
of Branicky, et al. (1998), such manufacturing lines 
are hybrid dynamic systems with autonomous 
switching and autonomous jumps (see also Flaus, 
1998). Using concepts within a unitary hybrid model 
with discontinuous motions (Ye, et al., 1995), the 
existence of the stationary behaviour – in particular, 
of the self-balancing – may be related to the stability 
analysis of hybrid dynamic systems. 
 
This paper first presents the basic assumptions for 
modelling TSS lines. Then it will be summarised the 
main approach from the literature: the modelling as 
stochastic dynamic systems. A non-linear model of a 
TSS line will be presented next, leading to the 
necessity of modelling in the frame of the hybrid 
dynamic systems theory. Finally, a conclusion will 
be listed. 
 
 

2. BASIC MODELLING ASSUMPTIONS 
 
TSS lines are self-organising, therefore the need for 
centralised planning and management is reduced. 
Their operation is simple: each worker carries an 
item towards completion; when the last worker 
finishes his item, he sends it off and then walks back 
upstream to take over the work of his predecessor, 
who walks back and takes over the work of his 
predecessor and so on until, after relinquishing his 
item, the first worker walks back to the start to begin 
a new item. A worker might catch up to his successor 
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and be blocked from proceeding. The TSS Rule 
requires that the blocked worker remain idle until the 
station is available. Only the last worker is never 
blocked and he determines the line productivity. 
 
Let m be the number of workstations and n be the 
number of workers. The Normative Model is the 
simplest model of the dynamics of TSS lines, based 
on the following assumptions (Bartholdi and 
Eisenstein, 1996a): 
a) insignificant walk-back time: the total time to 
finish a product is much greater than the total time 
for the workers to handoff their work and walk back 
to get more work; 
b) total ordering of workers by velocity: each worker 
i is modelled by a velocity function, vi(x), giving his 
instantaneous work velocity at position x ∈  [0;1]; 
c) smoothness and predictability of work: the 
standard work content required by an item is spread 
continuously and uniformly along the flow line, 
whose length is normalised to 1 and partitioned into 
intervals corresponding to workstations (see 
figure 1). 
 

 
Fig. 1. The standard work content split into 

workstations and the workers positions 

( 1p
m

1j
j =∑

=
). 

 
xi gives the position of the i-th worker and represents 
the cumulative fraction of work content completed on 
his item at a given moment. The vector of workers 
positions x = (x1, x2, ...xn) represents the state of the 
system at any time. An iteration is the time elapsed 
between two successive handoff moments, which are 
also called reset moments. 
 
The attention in the state space is restricted to the 
sequence {x

(0)
, x

(1)
, x

(2)
, ... x

(k)
 , ...} of positions 

immediately after reset (where x1
(k)

=0, xn+1
(k)

=1). 
There is no need for now to focus on the line 
evolution within an iteration, that means between the 
reset moments. The sequence above is called the 
orbit beginning at x

(0)
. 

 
Let f be the function that maps the vector of workers 
reset positions so that x

(k+1)
=f(x

(k)
). The orbits 

{x
(k+1)

=f
k
(x

(0)
)}k=0,1,… , determined by the initial 

conditions x
(0)

, describe the line behaviour. The 
stationary behaviour is defined by the fixed points of 
f, which are points of balancing. 

3. TSS LINES 
AS STOCHASTIC DYNAMIC SYSTEMS 

 
Hereafter is presented the main modelling and 
analysis approach of TSS lines from the literature. As 
it was said above, proofs have been made in a 
stochastic context; they have been skipped below 
(see Bartholdi and Eisenstein, 1996a).  
 
The first result states the existence of at least one 
fixed point, x*=f(x*), for any TSS line, meaning that 
there exist worker positions x* such that, if workers 
start at positions x*, then they will always reset to x*. 
Therefore, balancing is always at least theoretically 
possible. 
 
It is said that worker j is faster than worker i – written 
as vipvj – if 

1
)x(v
)x(v

sup
j

i

]1,0[x
<










∈

, 

 
meaning that j is faster than i for any operation from 
the line. The above notation helps at stating a 
sufficient condition for the uniqueness of a fixed 
point of a TSS line, that is workers being sequenced 
from slowest to fastest (well order of workers). If this 
condition is not fulfilled, then the line may have 
multiple fixed points. Keeping the well order of 
workers, it has been proved that any orbit of worker 
positions, {x

(t+1)
=f

t
(x

(0)
)}, converges to the unique 

fixed point. 
 
As it is known, the production rate of a production 
line may be defined as the number of items 
completed in a time unit, as well as the time for 
processing an item. If there exists a stationary 
regime, the second definition corresponds to the cycle 
time of the line.  
 
Let τi(x,x’) be the time required to worker i, if not 
blocked, for walking from position x to position x’, 
0≤x≤x’≤1: 
 

∫=
'x

x i
i )z(v

dz)'x,x(τ  

 
Let Pk be the cumulative amount of work performed 
on an item when it has just left the station k: 
 

,...m2,1k=,p P0=P
k

0j
jk0        , ∑

=
=  (1) 

 
According to (1), the interval (Pk-1;Pk) represents 
the work content assigned to station k. Because it is 
claimed that only one worker can use a certain station 
at a given time, no two xi’s can assume values within 
the same interval (Pk-1;Pk). There are defined: 

p1 p2 .   .  .      
. 

pm 
 

x1 x2 xn .   .  .      

v1(x) v2(x) vn(x) 
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x =Pk-1, if x ∈ [Pk-1;Pk) 

x =Pk, if x ∈ (Pk-1;Pk] 
 
The interval [xi

(t]
;xi+1

(t)
] may be regarded like a 

dynamic partition of the work content assigned to 
worker i during iteration t. Let ai(t) be the time that 
would take to worker i to complete his suggested 
share of work, including both effective work time 
and possible delays because of blocking. This time is 
called allocation. Thus, one can write: 
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Pure work time allocations are called simple, 
different from delayed allocations, which include 
also delays due to blocking. They are respectively 
expressed by the two relations below: 
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The main result states that, if workers’ velocities are 
constant, with v1<v2<...<vn, and if workers are never 
blocked, then the line converges exponentially fast to 
the unique fixed point: 
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where the production rate is the largest 

possible: ∑
=

n

1j
jv . The line behaviour is linear, being 

described by the following equations: 
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representing a linear dynamic system. 

By rewriting these equations in the form: 
 

a
(t+1)

=T a
(t)

 (3) 
 
where T denotes the transition matrix of a finite state 
Markov chain that is irreducible and aperiodic 
(Resnick, 1992), one can note that the convergence of 

iterates { }∞=0t
)t(

ia  is guaranteed for any i=1,2,...n, 
yielding the convergence of the TSS line orbit 

{ }∞
=0t

)t(x . It is said that the line has a stationary 
behaviour. Note also that, if workers are sequenced 
from slowest to fastest, then the largest allocation, 
which is the cycle time of the line, converges from 
above and it is guaranteed to have decreased after 
each completion of n items. The production rate 
improvement is possible to a limit not depending on 
the starting positions of the workers. Yet, one can 
notice that the well order is only a sufficient 
condition for the stationary behaviour, since there are 
cases of other than slowest-to-fastest sequences of 
workers when the line converges to a fixed point not 
depending on the workers’ initial positions (Bratcu 
and Mînzu, 1999). 
 
 

4. A NON-LINEAR MODEL OF TSS LINES 
 
Different simulation cases referred in the literature 
have shown typical non-linear dynamics – such as 
limit cycles or behaviour depending of the initial 
positions of workers, or either on the partition of 
work among workstations – occurring when the 
“proper” sequence is not respected or/and it happens 
that workers be blocked (the so-called complicated 
behaviour). To understand it, the simulation study of 
state trajectories has been extended in between the 
reset moments. Thus, a non-linear model of TSS lines 
was built for simulation purpose, in the particular 
case of constant work velocities, but it can be easily 
extended in the general case (Bratcu and Mînzu, 
1999). As the matter of fact, as it is shown next, the 
hybrid dynamics of such lines is already reflected in 
this model. 
 
First, notice that the system exhibits piecewise linear 
dynamics, since any worker on the line can have only 
two states during an iteration: either he moves with a 
certain nonzero velocity, or he is blocked by the next 
worker when trying to continue work on the next 
station (velocity becomes zero). Two hybrid 
phenomena (Flaus, 1998) may be identified. The first 
one, called autonomous switching, appears at the 
transition between the two states above mentioned. 
The state trajectory remains continuous in this case. 
It exhibits discontinuities only in the reset moments, 
when the last worker reaches the line end. The line 
reset may thus be modelled as the second hybrid 
phenomenon, called autonomous jump. The jump 
phenomenon results from the simplifying assumption 
that workers move back infinitely fast, whereas they 
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practically cannot do. Thus, it is ensured a single 
moment of reset for all workers. 
 
The occurrence of the jump could be avoided by 
considering that workers move back with a single 
common velocity, much greater that each individual 
work velocity. Nevertheless, the advantage of having 
a continuous state trajectory would be covered by a 
greater complexity of the model, since in that case 
workers would reset at different moments. 
 

Notation: 
tr1, tr2, … trp, …  = the sequence of successive 
moments of reset; 
trp

-0 = the moment immediately before the p-th reset; 
trp

+0 = the moment immediately after the p-th reset; 
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The non-linear model of a TSS line is given in (4), 
with the initial condition x(0)=x(0)=x0=[x10 x20 …  xn0]. 
This model was used to build a non-linear block 
Simulink diagram for simulation, where workers 
were modelled by reset integrators. 
 
 
5. TSS LINES AS HYBRID DYNAMIC SYSTEMS 
 
This section shows that the modelling tools provided 
by the theory of hybrid dynamic systems are suitable 
to approach TSS manufacturing lines. Involving both 
continuous-valued and discrete-valued variables, the 
evolution of a hybrid dynamic system is given by 
equations of motion that generally depend on both. 
The continuous and discrete dynamics interact when 
the continuous state hits certain sets in the continuous 
state space. In view of the taxonomy proposed by 
Branicky, et al. (1998), TSS lines can be regarded as 
hybrid systems with autonomous switching and 
autonomous jumps. 
 
The autonomous switching is modelled as follows: 
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continuous state space vector (the instantaneous 
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Remembering that notation (1) 

1,  P0,  P,m1j=,pP m0

j

0k
kj === ∑

=
   denotes the 

cumulative work content on an item immediately 
after it leaves the j-th station (see section 2), 
functions ν and µ may be respectively expressed by 
(7) and (8): 
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The autonomous jumps may be modelled by: 
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where M={m1, m2, … , mn-1, 1} ∈  [0;1]n-1×{1} 
(jumps describe the handoff; they take place when 
the line resets, that means when xn(t)=1). Function h 
is given by (6) and function J is detailed in: 
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The model of a TSS line viewed as a hybrid dynamic 
system with autonomous switching and autonomous 
jumps is obtained by simply coupling the two 
models above (relations (5) and (9)): 
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with the initial condition 0≤x10

<x20
<… <xn0

<1. 
 
An unitary approach of hybrid dynamic systems, 
quite close to that of the classical dynamic systems 
theory and more suitable to formulate the stability 
analysis problem, was proposed by Ye, et al. (1995). 
Well-known concepts, such as time space, motion, 
invariant set and equilibrium, are extended in order 
to embed special features of hybrid dynamic 
systems. It is shown below how some of these 
results may be applied in the case of TSS lines. 

A TSS manufacturing system may be described as a 
5-uple { }0T,S,A,X,T  – which is a hybrid dynamic 
system (see Ye, et al., 1995) – as follows: 
 
T=R+ (the system evolves continuously in time); 

}Ttt{T 000 ∈=  (the set of initial moments); 
X=Rn (the set of states); 

[ ]{ }T
n21 000

...xxxaaAX  ==⊃  (the set of initial 

states); 

[ ] }              

{
T)t,a,t(x...)t,a,t(x)t,a,t(x

)t,a,t(x)t,a,t(pS

0n0201

00 ==⊂
, 

where a)t,a,t(p 00 = , are the motions (trajectories) 
of the system. 
 
One may observe that, if all workers are of constant 
velocity along the line, when being sequenced from 
slowest to fastest (v1<v2<… <vn – assumption of well 
ordering) and never blocked, motions are implicitly 
given as the solutions of the differential equation: 
 

[ ]T
n210

.
... vvv)t,a,t(x  =  (12) 

 
with the initial condition 0≤x10

<x20
<… <xn0

<1. 
 
Definition 1 - invariant set (Ye, et al., 1995): 
Let { }0T,S,A,X,T  be a hybrid dynamic system. A 
set M⊂ A is called invariant of system S if 
 

M)t,a,t(pMa

S)t,a,(p,Tt,Tt

0

000t,a 0

∈⇒∈
∈⋅∀∈∀∈∀  : 

 

 
It is said that M is an invariant of S or (S, M) is 
invariant. 
 
Definition 2 - equilibrium (Ye, et al., 1995): 
x0 ∈  A is called an equilibrium of a hybrid dynamic 
system { }0T,S,A,X,T  if the set {x0 } is invariant 
with respect to S. 
 
In other words, any motion starting from a state of 
an invariant remains within that invariant. An 
equilibrium is a state that, once it is reached, it will 
be never quitted by any motion of the system. One 
may note that the functioning rules of TSS line – 
mainly the rule of handoff – allows formulating the 
following  
 
Proposition: 
If the system S, described by relation (12), is 
reinitialised every time when xn(t)=1 according to  
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then the subset [0;1]n of the state space is an 
invariant of the system S. 
Proof: 
 
Let a be an initial state from [0;1]n and t0 be an 
initial moment. One may consider t0=0 without loss 
of generality. It must be proved that all motions 
described by x(t,a,t0) remain in [0;1]n. 
 
Let r1 be the first moment when xn(t)=1, that is the 
end of the first iteration or, equivalently, the first 
reset moment. Taking into account notations from 
section 2, one may write: 
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From now on, notations for initial state and initial 
moment are dropped. Let )r(xy 1

)0( −= . From (13) 

one may write: 
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where matrix P models reset jumps (previously 
given in (10)). From (12) and from the assumption 
of well ordering it follows that: 
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which yields that n)0( 1;0y ][∈ . Obviously, the 

positions of workers within the first iteration respect 
)0()0( y)t(xx <≤ . It follows that 

)[][ 1
n r;0t,1;0)t(x ∈∀∈  and, using (14), that x(1) ∈  

[0;1]n. 
 
The same reasoning may be used in order to prove 
by induction after k that 

,...2,1k,r;rt,1;0)t(x k1k
n =∈∀∈ −   )[][  Note that x(k) 

may be regarded as the initial state of the k-th 
iteration. The goal follows. ð 
 
When modelling a TSS manufacturing line as a 
hybrid dynamic system, one may superficially think 
that the balancing point of the line – expressed by 
relation (2) – might be characterised as an 
equilibrium of the system, in view of definition 2. 
This is not true, because, in fact, the motions do not 
converge to a single point of the state space (this 
would mean that workers be stopped), but to a 

pattern of moving, where each worker i repeats the 
execution of a work content in the interval 
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. The stationary behaviour is a 

periodical one. 
 
 

6. CONCLUSION AND FURTHER 
DEVELOPMENT 

 
Being self-organising systems, able to autonomously 
reach a periodical stationary behaviour, expressed by 
the optimal production rate, TSS lines – called also 
bucket brigades – have been primarily treated as 
stochastic dynamic systems. 
 
This paper has presented a new modelling approach 
of TSS manufacturing lines, showing that they may 
be modelled first as non-linear dynamic systems – 
for simulation purpose – and, even more correctly, 
as hybrid dynamic systems, namely with 
autonomous switching and autonomous jumps. 
Within this latter frame, another modelling 
approach, based upon emphasising discontinuous 
motions, has opened a view to the stability analysis. 
An invariant set of the system – in terms of hybrid 
dynamic systems theory of stability – has been 
deduced. 
 
Remember that the results obtained in modelling and 
analysis of TSS lines have been based upon some 
simplifying, even quite realistic assumptions (The 
Normative Model), whose main weakness was to 
model workers as simple work velocities. TSS lines 
behaviour would become very complicate if taking 
into account the psychological aspects induced by 
using human operators. An interesting further 
development of the work presented herein would be 
to try treating the general case, and this is probably 
achievable in the frame of chaos theory. On the other 
hand, the actual trend of implementing TSS strategy 
on flow lines is oriented to using robots, obviously 
more easily to control. In this context, the Normative 
Model becomes even more suitable for analysis 
purpose and the TSS lines average behaviour is 
much closer to linear deterministic. 
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