Possibilistic networks for uncertainty knowledge processing in student diagnosis
Abstract
In this paper, a possibilistic network implementation for uncertain knowledge modeling of the diagnostic process is proposed as a means to achieve student diagnosis in intelligent tutoring system. This approach is proposed in the object oriented programming domain for diagnosis of students learning errors and misconception. In this expertise domain dependencies between data exist that are encoded in the structure of network. Also, it is available qualitative information about these data which are represented and interpreted with qualitative approach of possibility theory. The aim of student diagnosis system is to ensure an adapted support for the student and to sustain the student in personalized learning process and errors explanation.
Downloads
@ "Dunarea de Jos" University of Galati