The Disturbance Model In Model Based Predictive Control
Abstract
Model Based Predictive Control (MBPC) is a control methodology which uses a process model on-line in the control computer; this model is used for calculating output predictions and optimizing control actions. The importance of the system model has been generally recognized, but less attention has been paid to the role of the disturbance model. In this paper the importance of the disturbance model is indicated with respect to the EPSAC approach to MBPC. To illustrate this importance, an example of this advanced control methodology applied to a typical mechatronic system is presented, to compare the performances obtained by using different disturbance models. It clearly shows the benefits of using an ‘intelligent’ disturbance model instead of the ‘default’ model generally adopted in practice.
Downloads
@ "Dunarea de Jos" University of Galati