

THE HISTORICAL EVOLUTION OF PHYSICAL EXERCISE FROM PRIMITIVE SOCIETIES TO THE MODERN ERA

PASCARI, D.,^{1*} ARSENE, I.²

¹*Institute of Physical Education and Sport of Moldova State University

²Institute of Physical Education and Sport of Moldova State University

* Corresponding author: danielushka85@gmail.com

Abstract

This article explores the historical evolution of physical exercise, tracing its transformation from primitive survival activities to the structured and scientifically grounded training methods of the modern era. Physical activity has always been an essential component of human life, initially linked to basic survival tasks such as hunting, gathering, and self-defense in primitive societies. These movements, though unstructured, laid the foundation for what would later evolve into organized physical education. As societies progressed, physical exercise began to acquire social, cultural, and even spiritual significance. In ancient civilizations such as Egypt, China, Greece, and Rome, physical training was associated with military preparation, aesthetic ideals, and philosophical values. The Greeks, in particular, emphasized the harmony between body and mind, establishing physical education as a key part of their educational systems.

During the Middle Ages, physical activity was often linked to combat training and chivalry, especially among the nobility. However, it was in the Renaissance and Enlightenment periods that physical exercise regained importance, inspired by the rediscovery of classical ideals and the rise of scientific thought. In the 19th and 20th centuries, with the development of modern pedagogy, sports institutions, and medical knowledge, physical education became formalized in school curricula and professional training programs.

The article also highlights how perspectives on health, fitness, and physical well-being have evolved, shifting from purely utilitarian functions to a broader understanding of physical activity as a vital component of personal development and public health. Today, exercise is recognized not only for its physiological benefits but also for its psychological, educational, and social roles in building a healthy society.

Keywords: *evolution, physical exercise, primitive societies, modern era, health, training.*

1. INTRODUCTION

Physical exercise has played a fundamental role in human existence since the earliest stages of our evolution, serving as a cornerstone for survival, adaptation, and societal development. From the daily demands of prehistoric hunter-gatherer societies to the highly organized and technologized fitness regimens of today, the nature and significance of physical activity have undergone profound transformations, mirroring broader economic, cultural, military, and technological shifts in human civilization (Lieberman, 2013; Kenney, Wilmore, & Costill, 2015).

In the earliest human societies, physical activity was not a separate pursuit but an integral part of survival. The need to hunt, gather, migrate, and defend required a constant engagement with physical exertion. These activities were deeply embedded in daily life, and the human body evolved accordingly to meet these challenges. Lieberman (2013) emphasizes that many of our physical traits, such as endurance running and efficient walking, are adaptations that allowed our ancestors to thrive in demanding environments. Pontzer (2017) further supports this by highlighting how hunter-gatherers engage in extensive low-to-moderate intensity physical activity, which was essential for acquiring food and securing safety.

As societies transitioned from nomadic lifestyles to settled civilizations, the role of physical exercise became more formalized and structured. Ancient Greece stands out as a pivotal moment in the history of physical activity, where exercise was deeply intertwined with cultural values and education. Physical fitness was not merely a means of maintaining health but a way of cultivating virtues and preparing citizens for military and civic responsibilities. According to Golden (1998), the Greeks developed gymnasiums as centers for physical training and intellectual development, where young men trained in athletics, combat, and philosophy. The Olympic Games, first recorded in 776 BCE, symbolized this integration of physical prowess, moral virtue, and religious devotion, representing an ideal of balanced development that shaped Western conceptions of the body and character (Young, 2004).

The Romans, inheriting much from the Greeks, emphasized physical training mainly for military purposes. Roman physical culture was pragmatic, focused on preparing soldiers for the rigors of warfare, with training routines designed to build

strength, endurance, and combat skills (Kyle, 2014). Recreational spectacles such as gladiatorial contests and chariot races also became central to Roman public life, reflecting a societal fascination with physical competition and spectacle (Kyle, 2014). However, for the broader population, daily physical activity was often related to labor-intensive tasks such as farming and construction (Snyder, 1993).

During the Middle Ages, physical exercise was primarily shaped by the needs of warfare and social hierarchy. The medieval knight's life was centered on rigorous training in martial skills — swordsmanship, horseback riding, archery, and other combat techniques — which were essential for survival and status (Leese, 2012). For common people, physical exertion remained closely linked to agricultural work and manual labor, with little emphasis on organized physical education or recreational exercise (Snyder, 1993).

The Industrial Revolution marked a watershed moment, dramatically altering the nature of human labor and daily activity. Mechanization and urbanization reduced the physical demands of work, contributing to a decline in everyday physical exertion (Perkin, 1996). This transformation prompted concerns about public health and physical decline, especially among urban populations increasingly engaged in sedentary occupations. As a response, organized physical education and sport emerged as crucial tools for maintaining health and fitness. In the 19th century, pioneers such as Friedrich Ludwig Jahn in Germany promoted gymnastics as a means of strengthening body and nation, while modern sports clubs and physical education programs proliferated across Europe and North America (Guttmann, 2004; Krüger & Riordan, 1996).

The modern era has witnessed a significant redefinition of physical exercise, shaped by advances in science, medicine, and technology. Exercise is now recognized as a vital component of a healthy lifestyle, with extensive research documenting its benefits for cardiovascular health, metabolic function, mental well-being, and longevity (Warburton, Nicol, & Bredin, 2006). The World Health Organization (2020) recommends regular moderate-to-vigorous physical activity for adults and children to reduce the risk of non-communicable diseases, including heart disease, diabetes, and depression. These guidelines reflect a global consensus on the preventive and therapeutic roles of exercise.

Technology has further transformed how physical activity is understood and practiced. The advent of wearable devices, smartphone applications, and online fitness platforms enables individuals to monitor, analyze, and optimize their exercise routines with unprecedented precision (Banaee, Ahmed, & Loutfi, 2013). These innovations support personalized fitness plans and foster engagement by providing real-time feedback and social connectivity. Moreover, advances in sports science have refined training methodologies, enhancing athletic performance and injury prevention through data-driven approaches (McArdle, Katch, & Katch, 2015).

Throughout history, the evolution of physical exercise has been deeply connected to the shifting demands and aspirations of society. In prehistoric times, exercise was inseparable from survival; in ancient civilizations, it symbolized cultural ideals and military readiness; in the industrial age, it responded to the health challenges of modernization; and today, it embodies personal wellness, disease prevention, and performance excellence (Kenney et al., 2015). This dynamic trajectory illustrates not only the adaptability of physical exercise but also its enduring significance as a cultural and biological phenomenon.

In summary, physical exercise is more than mere movement or recreation — it is a fundamental aspect of human life that reflects the complex interplay between biology, culture, and technology. From its origins in the natural movements required for survival to its current status as a central pillar of public health and individual well-being, exercise continues to evolve, shaped by the values and innovations of each era. As societies face new challenges such as sedentary lifestyles, aging populations, and chronic diseases, the role of physical exercise as a tool for health promotion and quality of life remains as vital as ever (Warburton et al., 2006; WHO, 2020).

2. METHODOLOGY

Research hypothesis. The research hypothesis posits that physical exercise has evolved from essential survival activities into consciously organized training programs aimed at improving health and physical performance, under the influence of technological and cultural developments. This transformation reflects changes in human society, lifestyle, and scientific understanding over time.

Research aim. The primary aim of this study is to analyze and present the key stages in the evolution of physical exercise, identifying the main factors that contributed to its transformation from basic survival activities in primitive societies to the modern forms of structured training and fitness practices.

Research objectives. To achieve this aim, the study focuses on the following objectives:

1. To investigate how primitive societies utilized physical movement as a means of survival, including hunting, gathering, and defense.
2. To analyze the transition toward organized physical exercises in ancient civilizations, with an emphasis on Greece and Rome, where exercise was integrated into education, military training, and social life.
3. To evaluate the role and characteristics of physical exercise during the medieval and Renaissance periods, particularly the influence of military demands and social structures.
4. To explore the impact of the Industrial Revolution on physical activity, considering changes in work patterns, urbanization, and the emergence of institutionalized physical education and sport.
5. To study the development of physical exercise in the modern era, focusing on cultural shifts, scientific advancements, and technological innovations that have shaped contemporary fitness and health practices.

Research methods. This study employs a combination of qualitative research methods:

- **Literature review.** A comprehensive bibliographic investigation was conducted, gathering relevant sources including academic books, journal articles, historical records, and contemporary studies related to the evolution of physical exercise.
- **Documentary analysis.** Historical documents and texts were analyzed to extract data on the social, cultural, and technological contexts influencing physical activity across different eras.

- **Comparative historical analysis.** The evolution of physical exercise was compared across distinct historical periods, highlighting changes and continuities in practices, purposes, and societal attitudes. This comparative approach allows for a nuanced understanding of how external factors shaped physical activity.

Research organization. The research is structured chronologically, dividing the evolution of physical exercise into five major historical stages:

1. **Primitive societies.** Examination of physical activity as a survival mechanism essential for hunting, gathering, migration, and defense, emphasizing the instinctive and functional nature of movement.
2. **Ancient civilizations.** Focus on Greece and Rome, where exercise was formalized through education, military training, and public competitions such as the Olympic Games. The study considers philosophical and cultural perspectives on the body and physical excellence.
3. **Medieval and Renaissance periods.** Analysis of physical activity within the context of feudal and military structures, including knightly training, archery, horsemanship, and the limited recreational activities available to the broader population.
4. **Industrial revolution.** Investigation of the profound societal changes brought by industrialization, which reduced daily physical labor and increased sedentary lifestyles, prompting the rise of organized physical education, sports clubs, and public health initiatives.
5. **Modern era.** Exploration of contemporary physical exercise as a multidimensional phenomenon encompassing fitness, wellness, preventive health, and technological integration such as wearable devices and digital monitoring tools. The role of scientific research in exercise physiology and public health policy is also examined.

Each stage is analyzed within its specific socio-cultural, economic, and technological context, allowing for an integrated understanding of the evolution of physical exercise. This organization facilitates a clear and systematic presentation of the historical trajectory, highlighting key influences and transformations.

3. RESULTS

Research Results. In order to correctly understand the evolution of physical exercise, we analyzed the cultural and social impact of each historical period and structured the study around two main aspects:

1. Historical stages and characteristics of physical exercises (Table 1, Chart 1)
2. The evolution of equipment and facilities used for physical exercise

We also applied comparative methods between civilizations and made use of essential historical sources to gain a comprehensive understanding of this evolution (Tables 1, 2, 3, and 4).

Aspect 1: Historical stages and characteristics of physical exercises

Table 1. Historical stages and characteristics of physical exercises

Period	Type of Physical Activities	Motivation/Purpose	Examples of Exercises
Primitive Societies	Survival activities (hunting, fighting)	Survival	Hunting, climbing, running
Ancient Civilizations	Organized activities (Olympic Games, military training)	Education, military preparation	Wrestling, racing, gymnastics exercises
Middle Ages	Military preparation (knights)	Preparation for war	Horseback riding, tournaments, military training
Renaissance	Movements inspired by antiquity	Body–mind harmony	Dancing, gymnastic exercises
Industrial Revolution	Increased sedentarism, new forms of physical activity	Health and recreation	Gymnastics, walking, outdoor physical exercises
Modern Era	Specialized fitness programs	Health, fitness, performance	Gym workouts, aerobics, organized sports

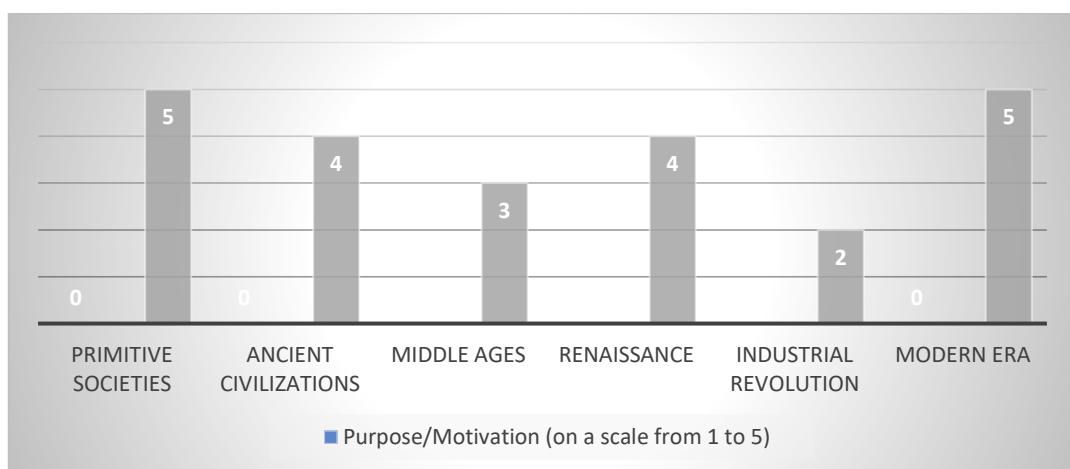
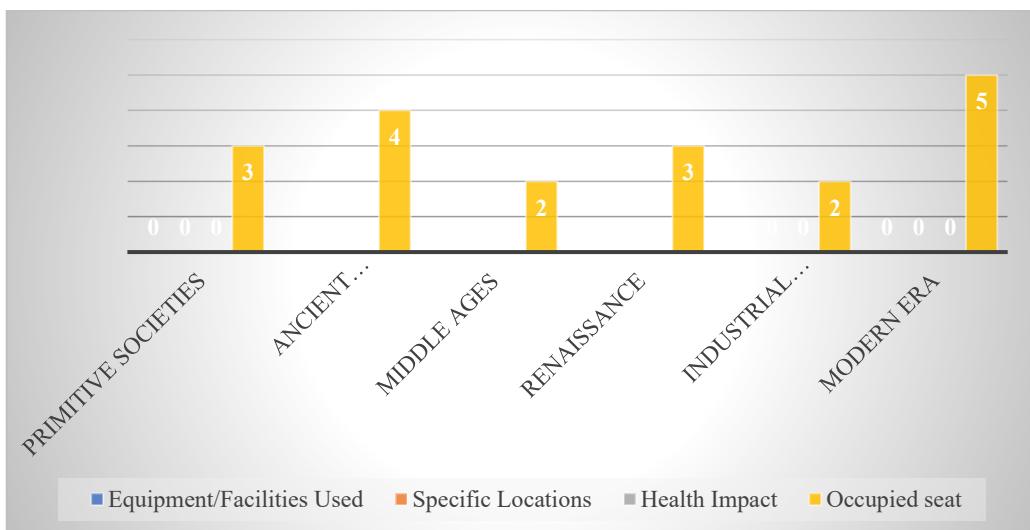


Figure 1. Development of physical exercise over time

This graph illustrates the evolution of the motivation for physical exercise throughout historical periods, with the X-axis representing the time periods (Primitive Societies, Ancient Civilizations, Middle Ages, Renaissance, etc.) and the Y-axis representing the purpose/motivation (ranging from survival to modern health and fitness).

Table 2. Motivation evaluation scales

Period	Purpose/Motivation (on a scale from 1 to 5)
Primitive Societies	5 (Survival)
Ancient Civilizations	4 (Education, Military Training)
Middle Ages	3 (Military Preparation)
Renaissance	4 (Body-Mind Harmony)
Industrial Revolution	2 (Sedentary Lifestyle, Beginning of Health Exercise)
Modern Era	5 (Health, Fitness, Performance)


Graph 1. The development of physical exercise throughout history

Aspect 2. The evolution of exercise equipment and facilities

Table 3. The evolution of exercise equipment and facilities

Period	Equipment/Facilities Used	Specific Locations	Health Impact
Primitive Societies	Simple tools (spears, stones)	Natural environment (forests, plains)	Muscle strengthening, endurance
Ancient Civilizations	Arenas, stadiums, racing equipment	Stadiums, gymnasiums	General physical improvement
Middle Ages	Armor, swords, shields	Castle courtyards	Body strengthening for combat
Renaissance	Gymnastics applications	Gardens and gymnasiums	Balance and overall health

Industrial Revolution	Early gym equipment	First sports halls	Combating sedentary lifestyle
Modern Era	Advanced machines, treadmills, weights	Fitness centers, public spaces	Performance enhancement, disease prevention

Graph 2. The impact of physical exercise on health in different historical periods

Graph 2 characteristics: This graph illustrates how physical exercises have had varying impacts on health and longevity throughout different historical periods. Table 4.

Table 4. The evolution of the impact on health

Period	Health Impact (on a scale from 1 to 5)
Primitive Societies	3 (Endurance, but risk of injuries)
Ancient Civilizations	4 (Improvement of general physical condition)
Middle Ages	2 (Warfare-focused, low health impact)
Renaissance	3 (Balance between body and mind)
Industrial Revolution	2 (Increase in sedentary lifestyle)
Modern Era	5 (Focus on health and disease prevention)

4. DISCUSSION

Physical exercise has undergone a profound evolution, transitioning from simple, necessity-driven physical activities essential for survival in primitive societies to highly organized and deliberate training regimens in the modern era. This transformation reflects the dynamic interplay of cultural, social, and technological developments across history.

In primitive societies, physical activity was primarily motivated by survival needs such as hunting, gathering, and defense. These activities demanded endurance,

strength, and agility, shaping the foundation of human physical capability. However, the focus was not on exercise as a form of health promotion or fitness but rather on the immediate demands of life. This stage laid the groundwork for the fundamental role of movement in human life but lacked the structured approach seen in later periods.

The ancient civilizations marked a significant shift toward organized physical activity, with exercises becoming part of education, military training, and religious rituals. Events like the Olympic Games in ancient Greece exemplify this change, where physical prowess was celebrated and cultivated. The development of specialized facilities such as arenas and gymnasiums supported this emerging culture of physical training, emphasizing both physical improvement and social status. Such practices demonstrate an early understanding of the benefits of systematic physical activity on health and performance.

During the Middle Ages, physical exercise was closely tied to military preparedness, particularly for knights and warriors. Training was practical and focused on skills essential for combat, such as horseback riding and swordsmanship. Although health benefits were secondary, physical conditioning remained a vital part of medieval life, emphasizing strength and endurance in the context of warfare.

The Renaissance brought renewed interest in the harmony between body and mind, inspired by the revival of classical ideals. Exercise began to be viewed not only as physical preparation but also as a means to promote overall well-being and mental balance. This holistic perspective paved the way for modern concepts of fitness and health.

The Industrial Revolution introduced new challenges, including increased sedentary lifestyles due to mechanization. In response, forms of physical exercise were adapted to counteract these negative effects, emphasizing health maintenance and recreation.

In the modern era, physical exercise has become a vital component of public health, fitness, and performance enhancement. Advanced equipment, specialized training programs, and scientific research have contributed to a sophisticated understanding of exercise physiology and its role in disease prevention and health promotion.

Overall, the evolution of physical exercise reflects humanity's growing recognition of its importance not only for survival but also for enhancing quality of life. This progression highlights the continuous adaptation of exercise practices to meet the changing needs of society.

REFERENCES

1. Banaee, H., Ahmed, M. U., & Loufti, A. (2013). *Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges*. *Sensors*, 13(12), 17472–17500. <https://doi.org/10.3390/s131217472>
2. Golden, M. (1998). *Sport and society in ancient Greece*. Cambridge University Press.
3. Guttmann, A. (2004). *From ritual to record: The nature of modern sports*. Columbia University Press.
4. Kenney, W. L., Wilmore, J., & Costill, D. (2015). *Physiology of sport and exercise* (6th ed.). Human Kinetics.
5. Krüger, M., & Riordan, J. (1996). *The story of the Olympics*. *Sport in Society*, 1(1), 49–66. <https://doi.org/10.1080/17430439608716594>
6. Kyle, D. G. (2014). *Sport and spectacle in the ancient world*. Wiley-Blackwell.
7. Leese, R. (2012). *Medieval knight: The history and lifestyle of the medieval warrior*. Amber Books.
8. Lieberman, D. E. (2013). *The story of the human body: Evolution, health, and disease*. Pantheon Books.
9. McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). *Exercise physiology: Nutrition, energy, and human performance* (8th ed.). Wolters Kluwer.
10. Perkin, H. (1996). *The rise of professional society: England since 1880*. Routledge.
11. Pontzer, H. (2017). *Burn: New research reveals why we get fat and what to do about it*. Penguin.
12. Snyder, C. A. (1993). *Medieval peasants and their societies*. Routledge.
13. Warburton, D. E., Nicol, C. W., & Bredin, S. S. (2006). *Health benefits of physical activity: The evidence*. *Canadian Medical Association Journal*, 174(6), 801–809. <https://doi.org/10.1503/cmaj.051351>
14. World Health Organization (WHO). (2020). *Physical activity fact sheet*. <https://www.who.int/news-room/fact-sheets/detail/physical-activity>
15. Young, D. C. (2004). *The Olympic myth of Greek amateur athletics*. Ares Publishers

THE IMPORTANCE OF THE READY POSITION AT THE TABLE IN TABLE TENNIS FOR THE EFFICIENT EXECUTION OF STROKES

PLĂEAȘU, M.,^{1*} MELENCO, I.²

¹“Ovidius” University of Constanța, Doctoral School of Sport Science and Physical Education, Aleea Universității, Constanța, Romania

*Corresponding Author: plaeasumihaela@yahoo.com

Abstract

The paper aims to highlight the importance of the ready position in table tennis, a fundamental element for the efficient execution of strokes. The primary goal of the work is to analyze how a correct position can influence reactions, balance, and force generation during the game. It includes a detailed approach to the biomechanics of the posture, its practical advantages in the performance of cadet and mini-cadet players, and training methods to correct and improve this stance. The paper demonstrates the positive impact of a correct ready position on technique, tactics, and injury prevention in table tennis.

Keywords: *flexibility, recalibration posture, performance, strength, speed control, recovery.*

1. INTRODUCTION

1.1 The ready position in table tennis

The ready position (or basic stance) is the fundamental element of technique in table tennis, serving as the starting point for every stroke. Often underestimated by beginners, this stance has a major impact on the efficiency of subsequent movements, allowing the player to react quickly and maintain balance against the opponent's shot (McAfee, 2009).

1.2 Impact on player's performance

Specialized literature emphasizes that every stroke begins and ends in the ready position, regarded as the “foundation” ensuring smooth transitions between phases of play (Fullen, 2007; McAfee, 2009). Thus, the importance of this stance lies in how it prepares the player's body for optimal anticipation and response to the opponent's actions (Mocrousov, 2017).

1.3 Mastering the ready position

For young players, mastering the ready position is essential in developing correct technical habits. Table tennis coaches insist from the very first lessons on adopting a correct basic stance, knowing that early habits will influence long-term performance (Tepper, 2003).

A proper ready position ensures not only the balance needed for offensive and defensive strokes but also the ability to move quickly around the table — an especially important factor in the fast pace of modern play (Qian et al., 2016).

1.4 Biomechanical research and practical implications

Moreover, recent biomechanical research highlights significant differences between high-level and less experienced players in how they control their ready-position posture and dynamic balance (Fu et al., 2016).

This scientific and methodological framework once again underlines the necessity of rigorously addressing the ready position in athlete preparation, from beginner to elite levels.

This study aims to explore and expand in detail the role of the ready position in the efficient execution of table tennis strokes, following the classic structure — from defining and describing the correct stance to the biomechanical aspects involved, concrete practical advantages, and training implications.

Each section is supported by applied training examples (particularly for cadet and mini-cadet categories) and up-to-date bibliographic references (specialist books, academic articles, ITTF guides, and materials from recognized coaches) to demonstrate thorough documentation and ensure a rigorous academic discourse.

2. OBJECTIVES

2.1 General objective

This paper seeks to analyze and highlight the essential role of the ready position in the efficient execution of strokes in table tennis, with an emphasis on the cadet and mini-cadet age groups.

2.2 Specific objectives

Specifically, the objectives are:

Definition of the correct ready position from the perspective of specialized literature and current coaching practice.

Analysis of the biomechanical components of the ready-position posture and identification of mechanisms by which they influence reaction speed, balance, and force generation in strokes.

Demonstration of the practical advantages of a correct ready position in competitive play, including precision, energy efficiency, and tactical versatility.

Presentation of applied training examples used in the development of young athletes to perfect their basic stance.

Reinforcement of the ready position's importance as a central element in the development of technique, tactics, and motor discipline.

Formulation of recommendations for optimizing technical preparation by integrating the ready position into modern training strategies.

3. THE CORRECT READY POSITION

3.1 Foot placement and knee flexion

The correct ready position is the neutral posture a player adopts before hitting the ball, providing stability and preparing for movement in any direction (McAfee, 2009). Key characteristics, consistently described in the literature, include:

Foot placement: approximately shoulder-width apart or slightly wider, offering a broad support base (Larcombe, 2019; McAfee, 2009);

Knee flexion: bent to lower the center of gravity slightly forward, favoring balance and enabling rapid, explosive movements toward the ball (McAfee, 2009).

3.2 Weight distribution and torso position

Weight distribution: evenly on both feet, with a slight accent on the balls of the feet (toes), so that the heels do not press heavily on the ground — this distribution allows for quicker reactions, much like a compressed spring ready to release (Tepper, 2003).

Torso lean: slight forward bend (“hunched” enough to bring the center of gravity over the support base) facilitates ball tracking without excessive head or eye movement (Mocrousov, 2017).

3.3 Arms and gaze

Shoulders and arms: shoulders relaxed and slightly lowered, elbows bent and held in front of the body. The racket hand holds the paddle at about midpoint between the forehand and backhand positions — often with the paddle face neutral (perpendicular to the ground, tip up) — allowing for rapid transition into any stroke (McAfee, 2009; Mocrousov, 2017).

The non-racket hand also aids overall balance, typically held in front or to the side (Shu, 2015).

Gaze: fixed on the ball and the opponent’s movements, crucial for anticipating the next shot (Mocrousov, 2017).

Coaches working with young players focus intensively on correcting and refining this position.

For example, cadet-level training often includes static holds in the low ready position for short intervals (5–10 seconds) followed by relaxation, conditioning the leg muscles for static effort (Mocrousov, 2017). Fun “games” such as mini basketball or volleyball drills, performed in the ready stance, help children internalize the posture naturally (Mocrousov, 2017). One concrete drill, “squat jumps,” has players leap forward from a squatted ready stance and land back in it, building leg strength and teaching them to return to the foundational position (Mocrousov, 2017).

The ready position is also adapted to individual playing styles. Offensive players often use a slightly higher stance (moderate knee bend) with feet set a bit wider and positioned nearer the table’s center for equal forehand/backhand access (Mocrousov, 2017). Forehand-dominant players (especially penhold grip users) offset slightly toward the backhand side with the left foot forward (for right-handers) to prepare for an expansive forehand swing (Mocrousov, 2017).

Conversely, defensive specialists adopt a much lower, wider stance and stand farther from the table — this enhances stability and covers a larger defensive area, acting like an “arch” to absorb powerful chops or lobs (Mocrousov, 2017).

In summary, the correct ready position entails: feet at shoulder width (or wider), slight foot offset (left foot forward for right-handers), bent knees, weight on the balls of the feet, forward-leaning torso, arms in front with elbows bent, racket centered, and eyes on the ball (McAfee, 2009; Mocrousov, 2017).

While minor tactical adjustments vary by style, this stance optimizes both stability and mobility, allowing for instant transition into movement or stroke execution (Larcombe, 2019).

Coaches emphasize that a stroke is only complete once the player has returned to this stance — reinforcing that consistency in the ready position underpins consistency in play (McAfee, 2009).

Common mistakes — insufficient knee flexion, incorrect torso angle, uneven weight distribution, or foot placement errors — are systematically corrected in training. For cadets, awareness and correction of these early mistakes (e.g., using floor markers to widen a too-narrow stance) are vital in building a performance-level foundation (Tepper, 2003).

4. BIOMECHANICS OF THE READY POSITION

4.1 Lowered center of gravity and weight distribution

The scientific explanation for the ready position’s efficiency lies in its biomechanical effects on forces, balance, and mobility:

Lowered center of gravity: knee flexion and torso lean shift the body’s center of gravity downward and slightly forward, yet within the support base — enhancing stability while storing potential energy in the leg muscles for rapid movement (McAfee, 2009; Qian et al., 2016).

Anterior weight distribution: placing weight on the forefoot allows for immediate force application in any direction; heel-weighted postures delay initiation as the athlete must shift weight forward first (Tepper, 2003). Elite players demonstrate

tighter control of plantar pressure oscillations, maintaining an optimal balance that promotes faster reactions (Fu et al., 2016).

4.2 Kinetic chain activation and shock absorption

Optimal joint alignment: correct angles at the ankles, knees, hips, and torso pre-activate the kinetic chain. Greater hip flexion and moderate ankle dorsiflexion in advanced players, observed during forehand loop preparation, indicate effective pre-loading of leg muscles for concentric extension (Qian et al., 2016). Subtle trunk rotation in the ready position also begins aligning the body for the anticipated stroke, maximizing movement amplitude and force (Mocrousov, 2017).

Shock absorption and dynamic balance: knee flexion acts as a damper when stopping or changing direction. Players with correct posture can decelerate and re-center more efficiently, whereas rigidly extended legs lead to imbalance and risk of toppling forward or sideways (Fu et al., 2016).

For cadets and mini-cadets, coaches simplify these concepts: “stay low like a cat ready to pounce” conveys the benefit of agility, while gentle rocking on toes and heels teaches optimal balance (“find the middle”) (Johnson, 2014). Static wall sits strengthen the quadriceps and calves used in maintaining the low stance (Smith, 2015).

Proper readiness also helps prevent injuries. Balanced force distribution and flexed knees reduce excessive joint loading during sudden directional changes, lowering risks of ankle sprains or knee overuse compared to imbalanced postures (Kondrić et al., 2011).

In short, biomechanical analysis shows that the ready position maximizes movement efficiency (muscle pre-activation), maintains equilibrium (low center of gravity, wide base), optimizes force transfer in strokes (kinetic chain alignment), and supports continuity of play (rapid return to neutral stance) (Fullen, 2007; Fu et al., 2016).

5. Practical Advantages

5.1 Improved reaction time and stroke consistency

Improved reaction time: starting from a prepared stance shortens the distance from intention to action, enabling returns of seemingly impossible shots — especially evident among cadets mastering the basic stance (Tepper, 2003).

Consistency and precision: repeatedly resetting to the same reference body position fosters stroke consistency, particularly in rapid multi-ball drills where quick returns to the ready stance maintain rhythm and accuracy (McAfee, 2009).

5.2 Enhanced power and spin generation

Enhanced power and spin generation: a stable base allows full engagement of legs and trunk in strokes — e.g., forehand loops become more forceful when weight is transferred smoothly from back to front with proper pre-loading (Qian et al., 2016).

Seamless defense-attack transitions: the ready position serves as a neutral pivot between low defensive and raised offensive postures, enabling top players like Ma Long or Timo Boll to switch roles fluidly in rallies. Cadet drills simulate these sequences to ingrain rapid recovery to the foundational stance.

5.3 Energy efficiency and tactical flexibility

Energy efficiency: maintaining moderate muscular tone rather than excessive tightness conserves energy, crucial in long matches. Good technique rooted in correct stance reduces unnecessary compensatory movements and delays fatigue (Greeley, 2018).

Tactical versatility: a neutral stance conceals shot intent until the last moment, denying opponents anticipatory cues and widening tactical choices (Peterson, 2013).

Error reduction: many unforced errors arise from suboptimal body positioning; a disciplined ready stance minimizes such mistakes and underpins reliable performance under pressure.

For young players, coaches gauge discipline and technique level by observing readiness posture throughout exchanges — often predicting rally winners by those who maintain an active, prepared stance from start to finish.

6. CONCLUSIONS

The ready position in table tennis is far more than a static pre-stroke posture — it is the keystone of efficient play. By maintaining feet apart, knees bent, weight balanced, torso forward, and arms poised, players create optimal conditions for quality strokes, rapid movement, and tactical adaptation (McAfee, 2009; Mocrousov, 2017).

Biomechanical principles — lowered center of gravity, muscle pre-loading, segment alignment — scientifically explain why this stance maximizes stability and agility. Contemporary studies confirm that elite players exhibit superior postural control and faster returns to neutral stance (Fu et al., 2016; Qian et al., 2016).

Practically, early integration of a correct ready position in cadet training yields athletes who move better, strike more cleanly, and instinctively prepare for each next action. From simple children’s exercises to complex match scenarios, proper stance delivers immediate and long-term benefits, fostering professionalism and technical maturity even at junior levels.

Moreover, the ready position aids injury prevention and energy economy, transforming what seems uncomfortable to novices into the natural, comfortable base of experienced players. Ultimately, readiness equals control — of the body, the timing, and the game itself.

For coaches and researchers, the implications are clear: technical preparation must prioritize fundamental stance before fine technical or tactical refinements. Modern training tools — video analysis, biomechanical feedback, functional exercises — can further hone readiness posture.

Future research should explore correlations between ready-position deviations and performance metrics such as electronically measured reaction times or unforced error rates.

In summary, the ready position is not merely a component of technique but its very essence, underpinning table tennis performance at all levels.

REFERENCES

1. Fullen, R. (2007). “*Every table tennis stroke includes basic ready position...*” in *Coaches, ProTableTennis.net*.
2. Fu, F., Zhang, Y., Shao, S., Ren, J., Lake, M., & Gu, Y. (2016). *Comparison of center of pressure trajectory characteristics in table tennis during topspin forehand loop between*

superior and intermediate players. International Journal of Sports Science & Coaching, 11(4), 559–565.

3. Kondrič, M., Matković, B., Furjan-Mandić, G., Hadžić, V., & Dervišević, E. (2011). *Injuries in racket sports among Slovenian players. Collegium Antropologicum, 35(2), 413–418.*
4. Larcombe, B. (2019). *Table Tennis Stance and Ready Position (with Fan Zhendong). ExpertTableTennis.com Blog, November 15, 2019.*
5. McAfee, R. (2009). *Table Tennis: Steps to Success. Human Kinetics.*
6. Mocrousov, E. (2017). *Tehnica, tactica și metodica tenisului de masă. State University of Physical Education and Sport, Chișinău.*
7. Qian, J., Zhang, Y., Baker, J. S., & Gu, Y. (2016). *Effects of performance level on lower limb kinematics during table tennis forehand loop. Acta Bioengineering et Biomechanica, 18(3), 149–155.*
8. Tepper, G. (2003). *ITTF Level 1 Coaching Manual. International Table Tennis Federation, Lausanne.*
9. Zhang, Y. (2016). *Technical Training for Youth Players. Journal of Chinese Table Tennis (unofficial translation).*