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ABSTRACT 

For the design of ship structures, the hull global strength in the case of head waves is one 
of the first analysis required by shipbuilding rules. For the strength analysis the 1D and 
3D-FEM models can be used, according to the design level information. In both cases the 
head equivalent design waves (EDW) are used linked to a non-linear iterative algorithm 
for the wave-ship system balance. The balanced algorithm is directly implemented into 
the FEM program by user procedures for the 3D models. For the 1D models a program 
code has been developed. As numerical study we consider a prismatic closed section 
floating structure, pointing out the influence of the wave height on the stresses at the main 
panels and the vertical bending moments and shear forces. 

Keywords: global strength, equivalent design wave, head wave condition.

1. INTRODUCTION 

The design of the ship structures involves 
several criteria to be checked as the yielding 
stress limit, maximum bending moments and 
shear forces, buckling, fatigue, etc. In any 
design stage the global strength of the ship 
hull has to be assessed, using 1D models or 
3D-FEM models, function to the existing data 
for the structure, according to the shipbuilding 
classification societies rules [2]. In the case of 
the 3D-FEM models the local strength can 
also be assessed, with the accuracy function to 
the mesh size of the model. 

For the head wave global strength as-
sessment by 1D models an iterative non-
linear algorithm has been developed, with 
two convergence criteria on floating and lon-
gitudinal trim conditions for the balance be-
tween the ship and the equivalent quasi-static 
design waves (EDW) [7],[12],[14]. The theo-
retical details of the balance algorithm are 
presented in reference [4], with the own   
developed code  P_ACASV.  

The global and local strength assessment 
by 3D-FEM models in head EDW waves 
requires also an iterative procedure for the 
balance computation between the ship hull 
and the wave. For this case we have devel-
oped user procedures written in the com-
mands files programming language of the 
FEM program [11], having as objective func-
tions (to be minimized) the vertical reaction 
forces in two nodes, aft and fore, with simple 
support boundary condition. The user sub-
routines, press.geo, sin_shell, sin_shell2, are 
presented in detail in reference [11]. The use 
directly of the user subroutines for the bal-
ance algorithm is practical only for the case 
of head waves. In the case of oblique EDW 
waves the third equilibrium condition on roll 
angle slows up the iterative procedure on 3D-
FEM models, so that the ship-wave equilibrium 
is obtained only by 1D models with specific 
codes [5]. The numerical study is developed for 
the same off-shore barge from reference [6], 
both 1D and 3D models, using codes and spe-
cific procedures for head wave EDW case [4]. 
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2. THE TEST BARGE DATA 

The test barge main data are: 
-the barge characteristics (Table 1) [5],[6]; 
-the 3D-FEM model extended over the whole 
barge length (Figs.1.a,b) [6]; 
-the mass distribution is considered uniform 
and external shape is prismatic with rectan-
gular transversal section over the whole 
barge length [6]. 

Table 1. The test barge characteristics [5],[6] 
L [m] 97 ν 0.3 
B [m] 33 ρm [t/m3] 7.7 
H [m] 4 NEL (1D) 40 
T [m] 2 Type (1D) Beam 

ρ [t/m3] 1.025 δx [m] (1D) 2.425 
g [m/s2] 9.81 NEL (3D) 239361 

∆ [t] 6562.05 Type (3D)  Shell 
xG [m] 48.5 Size(3D)[m] 0.1÷0.3 
yG [m] 0 hw [m] 0,2,4,7,10 
zG1 [m] 4.3 EDW length λ=L 

E [N/m2] 2.1e+11 EDW angle head 
 

 
Fig.1.a 3D-FEM model [6] 

 

 
Fig.1.b 3D-FEM model detail [6] 

 
 The 3D-FEM model boundary condi-
tions are: symmetry in the centre line (one 
sided model), aft and fore nodes (in base 
plane) vertical support (objective functions). 

3. THE 3D-FEM HEAD EDW WAVE 
STRENGTH ANALYSIS                                              

 In the case 3D-FEM model for the test 
barge, using the iterative procedure and the 
user subroutines from reference [4], the next 
results are obtained: 
-Figs.2.1-9 the water pressure on 3D model; 
-Figs.3.1-9 the von Mises equivalent stress on 
the whole barge structure; 
-Figs.4.1-9 deck normal stress distribution; 
-Figs.5.1-9 bottom normal stress distribution; 
-Figs.6.1-9 side tangential stress distribution; 
-Figs.7.1-2 maximum deck normal stress; 
-Figs.8.1-2 maximum deck von Mises stress; 
-Figs.9.1-2 maximum bottom normal stress; 
-Figs.10.1-2 maximum bott. von Mises stress; 
-Figs.11.1-2 maximum side tangential stress; 
-Figs.12.1-2 maximum side von Mises stress. 

 

 
Fig.2.1 3D, water pressure, hw=0, still water. 

 
Fig.3.1 3D, σvM [N/mm2], hw=0, still water. 

Normal stress σX [N/mm2] Deck SW head wave hw=0 m
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Fig.4.1 3D, deck σx [N/mm2], hw=0, sw. 
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Normal stress σX [N/mm2] Bottom SW head wave hw=0 m

-10

-8

-6

-4

-2

0

2

4

6

8

10

0.0 9.7 19.4 29.1 38.8 48.5 58.2 67.9 77.6 87.3 97.0

x[m]

stress [N/mm2]

 
Fig.5.1 3D, bottom σx [N/mm2], hw=0, sw. 

Tangential stress τXZ [N/mm2] Side SW head wave hw=0 m
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Fig.6.1 3D, side τxz [N/mm2], hw=0, sw. 

 
Fig.2.2 3D, water pressure, hw=2, hogging. 

 
Fig.3.2 3D, σvM [N/mm2], hw=2, hogging. 

Normal stress σX [N/mm2] Deck Hogging head wave hw=2 m
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Fig.4.2 3D, deck σx [N/mm2], hw=2, hogg. 

Normal stress σX [N/mm2] Bottom Hogging head wave hw=2 m
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Fig.5.2 3D, bottom σx [N/mm2], hw=2, hogg. 

Tangential stress τXZ [N/mm2] Side Hogging head wave hw=2 m
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Fig.6.2 3D, side τxz [N/mm2], hw=2, hogg. 

 
Fig.2.3 3D, water pressure, hw=4, hogging. 

 
Fig.3.3 3D, σvM [N/mm2], hw=4, hogging. 

Normal stress σX [N/mm2] Deck Hogging head wave hw=4 m
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Fig.4.3 3D, deck σx [N/mm2], hw=4, hogg. 
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Normal stress σX [N/mm2] Bottom Hogging head wave hw=4 m
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Fig.5.3 3D, bottom σx [N/mm2], hw=4, hogg. 

Tangential stress τXZ [N/mm2] Side Hogging head wave hw=4 m
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Fig.6.3 3D, side τxz [N/mm2], hw=4, hogg. 

 
Fig.2.4 3D, water pressure, hw=7, hogging. 

 
Fig.3.4 3D, σvM [N/mm2], hw=7, hogging. 

Normal stress σX [N/mm2] Deck Hogging head wave hw=7 m
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Fig.4.4 3D, deck σx [N/mm2], hw=7, hogg. 

Normal stress σX [N/mm2] Bottom Hogging head wave hw=7 m
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Fig.5.4 3D, bottom σx [N/mm2], hw=7, hogg. 

Tangential stress τXZ [N/mm2] Side Hogging head wave hw=7 m
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Fig.6.4 3D, side τxz [N/mm2], hw=7, hogg. 

 
Fig.2.5 3D, water pressure, hw=10, hogging. 

 
Fig.3.5 3D, σvM [N/mm2], hw=10, hogging. 

Normal stress σX [N/mm2] Deck Hogging head wave hw=10 m
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Fig.4.5 3D, deck σx [N/mm2], hw=10, hogg. 
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Normal stress σX [N/mm2] Bottom Hogging head wave hw=10 m
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Fig.5.5 3D, bottom σx [N/mm2],hw=10, hogg. 

Tangential stress τXZ [N/mm2] Side Hogging head wave hw=10 m
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Fig.6.5 3D, side τxz [N/mm2], hw=10, hogg. 

 
Fig.2.6 3D, water pressure, hw=2, sagging. 

 
Fig.3.6 3D, σvM [N/mm2], hw=2, sagging. 

Normal stress σX [N/mm2] Deck Sagging head wave hw=2 m
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Fig.4.6 3D, deck σx [N/mm2], hw=2, sagg. 

Normal stress σX [N/mm2] Bottom Sagging head wave hw=2 m
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Fig.5.6 3D, bottom σx [N/mm2], hw=2, sagg. 

Tangential stress τXZ [N/mm2] Side Sagging head wave hw=2 m
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Fig.6.6 3D, side τxz [N/mm2], hw=2, sagg. 

 
Fig.2.7 3D, water pressure, hw=4, sagging. 

 
Fig.3.7 3D, σvM [N/mm2], hw=4, sagging. 

Normal stress σX [N/mm2] Deck Sagging head wave hw=4 m
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Fig.4.7 3D, deck σx [N/mm2], hw=4, sagg. 
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Normal stress σX [N/mm2] Bottom Sagging head wave hw=4 m
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Fig.5.7 3D, bottom σx [N/mm2], hw=4, sagg. 

Tangential stress τXZ [N/mm2] Side Sagging head wave hw=4 m
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Fig.6.7 3D, side τxz [N/mm2], hw=4, sagg. 

 
Fig.2.8 3D, water pressure, hw=7, sagging. 

 
Fig.3.8 3D, σvM [N/mm2], hw=7, sagging. 

Normal stress σX [N/mm2] Deck Sagging head wave hw=7 m
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Fig.4.8 3D, deck σx [N/mm2], hw=7, sagg. 

Normal stress σX [N/mm2] Bottom Sagging head wave hw=7 m
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Fig.5.8 3D, bottom σx [N/mm2], hw=7, sagg. 

Tangential stress τXZ [N/mm2] Side Sagging head wave hw=7 m
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Fig.6.8 3D, side τxz [N/mm2], hw=7, sagg. 

 
Fig.2.9 3D, water pressure, hw=10, sagging. 

 
Fig.3.9 3D, σvM [N/mm2], hw=10, sagging. 

Normal stress σX [N/mm2] Deck Sagging head wave hw=10 m
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Fig.4.9 3D, deck σx [N/mm2], hw=10, sagg. 
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Normal stress σX [N/mm2] Bottom Sagging head wave hw=10 m
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Fig.5.9 3D, bottom σx [N/mm2], hw=10, sagg. 

Tangential stress τXZ [N/mm2] Side Sagging head wave hw=10 m
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Fig.6.9 3D, side τxz [N/mm2], hw=10, sagg. 

Normal stress σX [N/mm2] Deck Hogging head wave hw=0-10 m
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Fig.7.1 3D, deck σx [N/mm2], max, hogg. 

Von Mises stress σvM [N/mm2] Deck Hogging head wave hw=0-10 m
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Fig.8.1 3D, deck σvM [N/mm2], max, hogg. 
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Fig.9.1 3D, bottom σx [N/mm2], max, hogg. 

Von Mises stress σvM [N/mm2] Bottom Hogging head wave hw=0-10 m
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Fig.10.1 3D,bottom σvM [N/mm2],max, hogg. 

Tangential stress τXZ [N/mm2] Side Hogging head wave hw=0-10 m
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Fig.11.1 3D, side τxz [N/mm2], max, hogg. 

Von Mises stress σvM [N/mm2] Side Hogging head wave hw=0-10 m
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Fig.12.1 3D, side σvM [N/mm2],max, hogg. 
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Fig.7.2 3D, deck σx [N/mm2], max, sagg. 

Von Mises stress σvM [N/mm2] Deck Sagging head wave hw=0-10 m
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Fig.8.2 3D, deck σvM [N/mm2], max, sagg. 
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Normal stress σX [N/mm2] Bottom Sagging head wave hw=0-10 m
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Fig.9.2 3D, bottom σx [N/mm2], max, sagg. 

Von Mises stress σvM [N/mm2] Bottom Sagging head wave hw=0-10 m
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Fig.10.2 3D,bottom σvM [N/mm2],max, sagg. 

Tangential stress τXZ [N/mm2] Side Sagging head wave hw=0-10 m
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Fig.11.2 3D, side τxz [N/mm2], max, sagg. 

Von Mises stress σvM [N/mm2] Side Sagging head wave hw=0-10 m
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Fig.12.2 3D, side σvM [N/mm2],max, sagg. 

4. THE 1D MODEL HEAD EDW 
WAVE STRENGTH ANALYSIS                                              

 In the case 1D model for the test barge, 
using the iterative procedure from reference    
[4], the next results are obtained: 
-Figs.13.1-2 the vertical bending moments, 
hw=0-10m (step 0.5-1 m), EDW wave in hog-
ging and sagging conditions; 

-Figs.14.1-2 the vertical shear forces, hw=0-
10m (step 0.5-1 m), EDW wave in hogging 
and sagging conditions. 
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Fig.13.1 1D, VWBM [kNm], head, hogging. 
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Fig.13.2 1D, VWBM [kNm], head, sagging. 
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Fig.14.2 1D, VWSF [kN], head, sagging. 
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5. CONCLUSIONS 

Table 2.a Maximum and admissible stresses 
by 3D-FEM model 

No 
hw 

[m] 
σx[N/mm2]
deck-max 

σvM[N/mm2]
deck-max 

σx[N/mm2]
bottom-max 

σvM[N/mm2]
bottom-max 

adm [2] 175 175 175 175 

1 0-sw 2.81 3.13 -2.50 3.16 

2 2-hog 44.07 42.24 -43.48 40.75 

3 4-hog 87.86 84.18 -86.69 81.39 

4 7-hog 118.40 113.40 -116.80 109.70 

5 10-hog 132.20 126.70 -130.50 122.50 

6 2-sag -43.67 41.79 42.30 39.95 

7 4-sag -87,85 84.09 85.08 80.23 

8 7-sag -117.00 112.00 113.00 106.60 

9 10-sag -129.80 124.30 125.00 117.90 

 
Table 2.b Maximum and admissible stresses 

by 3D-FEM model 

No 
hw 

[m] 
τxz[N/mm2] 
side-max 

σvM[N/mm2] 
side-max 

adm [2] 110 175 

1 0-sw ±0.30 0.85 

2 2-hog ±6.42 47.78 

3 4-hog ±12.75 83.31 

4 7-hog ±18.08 112.40 

5 10-hog ±20.60 125.60 

6 2-sag ±6.46 41.39 

7 4-sag ±12.82 83.26 

8 7-sag ±17.99 110.70 

9 10-sag ±20.55 122.80 

 
Table 3 Maximum and admissible bending 

moments and shear forces by 1D model 
No hw [m]  Mmax[kNm] Tmax[kN]  

adm [2] ±4.64E+5 ±1.28E+4 

1 0-sw 0 0 

2 2-hog 1.58E+5 ±5.12E+3 

3 4-hog 3.16E+5 ±1.02E+4 

4 7-hog 3.72E+5 ±1.31E+4 

5 10-hog 3.82E+5 ±1.40E+4 

6 2-sag -1.58E+5 ±5.12E+3 

7 4-sag -3.16E+5 ±1.02E+4 

8 7-sag -3.72E+5 ±1.31E+4 

9 10-sag -3.82E+5 ±1.40E+4 

 From Figs.2-12, by 3D-FEM model, 
head EDW wave, the maximum stress values 
at the deck, bottom and side panels are se-
lected in Tables 2.a.b, with the admissible 
values from rules [2]. 
 From Figs.13-14, by 1D model, head 
EDW wave, the maximum bending moments 
and shear forces are selected in Table 3, with 
the admissible values from rules [2]. 
 As the EDW waves exceed the base 
plane (z=0) and the deck plane (z=H), the 
relations between the structural response and 
the wave height become to be non-linear 
(Figs.2-14, Tables 2-3).    
 In the case of 3D-FEM model (Tables 
2.a,b) the yielding stress limit criteria [2] is 
satisfied in all panels.  
 In the case of 1D model (Table 3) the 
global strength limit criteria [2] are satisfied 
on bending moment and for shear force the 
limit of the head equivalent design wave 
height EDW is hw=6.69 m. 
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