GLOBAL STRENGTH ANALYSIS USING 3D-FEM FULL EXTENDED SHIP MODELS, IN THE CASE OF EQUIVALENT QUASI-STATIC LOADS FROM OBLIQUE WAVES

Leonard Domnişoru

"Dunarea de Jos" University of Galati, Faculty of Naval Architecture, Galati, 47 Domneasca Street, 800008, Romania, E-mail: leonard.domnisoru@ugal.ro

ABSTRACT

This study focuses on a new numerical method developed for the ships' strength analysis in the case of quasi-static equivalent loads induced by oblique waves, on full 3D-FEM models. The ship-oblique wave equilibrium parameters are obtained by own program P_QSW , using an 1D ship model. The equivalent wave pressure load is applied on the 3D-FEM model by own subroutines and functions. The numerical tests are done on a 97m length offshore barge.

Keywords: ship 3D-FEM model, global strength, user subroutines and functions, oblique waves.

1. INTRODUCTION

Standard the global strength analysis of the ship hull structure is based on 1D-beam models [4],[7], 3D-FEM models partially extended over the ship length [5],[8] and 3D-FEM models one sided fully extended over the ship length [3], under head design waves. These approaches make possible the assessment of the ship's hull structure only for vertical in plane bending response.

In order to enhance the global strength analysis of the ship hull, the wave loads have to be considered for the generalised case of oblique equivalent waves. The advanced approach is based on 3D-FEM models fully extended over the ship length and both sides. The equilibrium parameters of the ship and oblique wave system are obtained by an 1D-beam model, based on a non-linear iterative procedure implemented in own program code P_QSW [4]. This approach makes possible the assessment of the global ship's strength for vertical and horizontal bending, with shearing and torsion, oblique wave loads.

© Galati University Press, 2015

In this study the user subroutines implemented into FEM program codes for applying the external equivalent hydrostatic oblique wave pressure over the 3D-FEM hull shell are presented. A numerical study case is considered for an offshore barge [4].

2. THEORETICAL BACKGROUND

2.1. 3D-FEM models by Femap/NX Nastran

(1) The 3D-CAD/FEM model development

Based on the ship offsetlines and the structural design project, using the CAD facilities of the Femap/NX Nastran [6], the 3D-CAD geometrical model of the ship hull, extended over the whole length and breadth of the ship, is obtained. Using the meshing techniques, the 3D-FEM model of the whole ship hull structure is obtained.

The 3D-FEM model is developed mainly based on the shell finite elements, with thick plate formulation (Mindlin) [1], [2], quad and triangle PLATE elements [6]. For the panels' ordinary stiffeners the BEAM

elements [1],[2] might be used. Some of the structural details are not included in the FEM model. Based on the structural response, where the extreme stress values are obtained, later detailed local 3D-FEM models have to be developed for the hot-spots stress domain to be obtained (not included in this study).

Using the same technique from cargoholds or half sided 3D-FEM models [3], besides the own steel hull mass, the other onboard masses are added in the full 3D-FEM hull model. The onboard masses are considered to be with distributed or lumped mass formulation. The resulting total displacement Δ and gravity centre position (x_G , y_G , z_G) have to be according to the selected loading case. The FEM model masses are inducing the gravity loads (body loads) [6].

The ship model is considered mono-hull with CL symmetry plan, restriction coming up from the 1D-beam model [4] used for shipwave equilibrium parameters computation.

(2) The 1D-beam equivalent hull model

The 1D-beam model [4] is developed for the equilibrium position of the ship and quasistatic oblique wave system computation.

It is very important to ensure the total compatibility between the 1D-beam and the 3D-FEM models, mass distribution and offset lines. Based on the 3D-FEM model, with user subroutines implemented into the FEM program, the mass diagram is obtained.

The ship - oblique wave equilibrium parameters by 1D-beam model approach is based on own non-linear iterative procedure, with program code P_QSW [4]. For a wave condition defined by h_w wave design height [10], ship-wave heading angle μ and quasistatic wave length λ , related to the ship's length *L* for maximum structural response [4],[7], the wave free-surface elevation is:

$$z_{w}(x, y) = d_{m} + (x - x_{F}) \cdot \theta + (y - y_{F}) \cdot tg(\varphi)$$

$$\pm \frac{h_{w}}{2} \cos\left[\frac{2\pi}{\lambda}(x\cos\mu + y\sin\mu)\right] \qquad (1)$$

$$x \in [0, L]; y \in [-B/2, +B/2]; \lambda = L\cos\mu$$

$$\pm \text{ sagging or hogging condition}$$

with the following 1D-beam model equilibrium parameters referring to the median plane of the quasi-static oblique wave: d_m vertical position (ship base plane reference); x_F , y_F centre plane position (ship CL and aft reference); θ , φ longitudinal and transversal trim (ship system reference).

The pressure from quasi-static oblique wave acting over the external shell of the 3D-FEM ship hull model has the expression:

$$p_{w}(x, y, z) = \rho \cdot g \cdot [z_{w}(x, y) - z]; \ x \in [0, L]$$

$$y \in [-B/2, +B/2]; \ z \in [0, H]$$
(2)

where: L, B, H are the ship length, breadth and height; ρ is the water density; g is the gravity acceleration; z=0 at ship base plane.

(3) The 3D-FEM boundary conditions

The 3D-FEM model is fully extended from aft to fore and on both sides. Based on quasi-static oblique wave pressure (2),(1), with 1D-beam [4] parameters, the 3D-FEM model and wave are in equilibrium.

The boundary conditions have only to eliminate the rigid body 6 DOF degrees of freedom of the structural model, having zero reaction forces and moments. According to the IACS-CSR Rules [10], the boundary conditions are applied at aft and fore ship's model nodes as in Fig.1 and Table 1.

Table 1. 3D-FEM model boundary conditions

	Node	$l - U_x$	$2-U_v$	$3-U_z$	$4-R_x$	$5-R_v$	$6-R_z$
1	ND fore	Х	X	Х	I		-
	ND_{aft_1}	1	Х	I	I	I	-
	ND_{aft_2}	-	-	х	-	-	-
	ND_{aft_3}	-	-	Х	-	-	-

Fig.1. 3D-FEM model boundary conditions

(4) Quasi-static oblique wave pressure loads Besides the gravity load (body) from all the model masses, on the 3D-FEM, the external load, induced by the oblique waves, has to be applied. The equivalent wave pressure is computed according to equation
(2) for wave (1), with the ship-wave equilibrium parameters obtained by 1D-beam approach [4]. The external hull shell finite elements have to be checked and oriented so that the normal vector on face 1 is going from outside to inside the ship hull.

The external hull shell elements are selected and the following variables and function are used in order to apply the quasistatic equivalent oblique wave pressure.

- Tools / Define Variables	(3)
Variable name: !HW	
<i>Value of Equations:</i> < <i>hw</i> [m]>	
Variable name: !LW	
Value of Equations: < lambda [m] >	
Variable name: !NIU	
<i>Value of Equations:</i> < <i>niu</i> [deg] >	
Variable name: !TETA	
<i>Value of Equations:</i> < <i>teta</i> [rad]>	
Variable name: !PHI	
<i>Value of Equations: < phi</i> [rad]>	
Variable name: !XF	
<i>Value of Equations:</i> < <i>xf</i> [m]>	
Variable name: !YF	
<i>Value of Equations:</i> < <i>yf</i> [m]>	
Variable name: !DM	
<i>Value of Equations:</i> < <i>dm</i> [m]>	
Variable name: !R	
Value of Equations: $<$ ro $[t/m^3] * g [m/s]$	$^{2}]>$
Variable name: !PI	
Value of Equations: 3.141592654	
Variable name: !EL	
Value of Equations: ACTID(9)	
Variable name: !A	
Value of Equations: !HW/2	
Variable name: !B	
Value of Equations: 360*COS(!NIU)/!L	W
Variable name: !C	
Value of Equations: 360*SIN(!NIU)/!LV	V
Variable name: !D	
Value of Equations: !TETA*180/!PI	
Variable name: !E	

© Galati University Press, 2015

Value of Equations: TAN((!PHI*180/!PI)) Variable name: !F Value of Equations: !XF Variable name: !G Value of Equations: !YF Variable name: !T Value of Equations: !DM Variable name: !H Value of Equations: 0.0 {1.0E-14} < OK >{sagging +hw / hogging -hw} (4) Model / Load / Elemental / Pressure Direction: Normal to Element Face Method: Variable Advanced / Variable: EL Value / Pressure: max (!H; (!R*(-ZEL(!EL)+

!T+(XEL(!EL)-!F)*!D+(YEL(!EL)-!G)*!E+ !A*COS((XEL(!EL)*!B+YEL(!EL)*!C))))) Selection Info / Face: 1 <OK>

In the *Analysis Set Manager* menu multiple cases can be defined, in order to run simultaneously the analyses for several loading cases corresponding to a set of wave heights. So several cases results will be in the same database and can be plotted on the same *XY chart*.

(5) The numerical results

The numerical results of the structural analysis include the deformations and stress distributions over the whole 3D-FEM. Based on the Femap/NX Nastran post-processing options [6] the stress charts (eq.von.Mises, normal or tangential) over the model length, at deck, bottom and side panels can be obtained.

Output Vector: 7033: Plate Top VonMises Stress

<Ouput vector: /055. Flate Top vonMises Stress <OK> <OK> List / Output / XY Plot In order to improve the output stress diagrams and *XY charts plots* the following view setups can be applied:

Background (View) / Transparent / (6) Top color 149 / Redraw (Window) View Options Label parameters / Use view Color / View color 0 Element / Use view color / View color 20 Load pressure / Use view color / View color 100 Filled Edges / No Draw Entities <OK>

Background (View) / Solid / (7) Top color 149 / Redraw (Window) View Options / Post Processing XY Titles / Top Centre / View color 0 XY Legend / ID Only / Centre Right XY Axes Style/Axis color 100/X Tics 11/Y Tics 11 XY X Range / Grid / Max-Min XY Y Range / Grid / Max-Min XY Curve 1 / Points Only / Color <nr>

XY Curve 9 / Points Only / Color <nr><0K>

Using *List / Output / XY Plot* menu, a list of the plotted results is obtained that can be exported into a *MS-Excel* file.

For selecting different FEM model parts, in order to assess the stress level, besides the *layers* technique, the following command sequence can also be applied:

View / Select / Model Data (8) Load Set Active → Select <load set nr & name> Group

None→*Select* <*group elements nr* & *name*>

2.2. 3D-FEM models by SolidWorks Cosmos/M

Using the SolidWorks Cosmos/M [9] program for global strength analysis, based on fully extended 3D-FEM ship hull model, the analysis includes the same steps as for Femap/NX Nastran [6] (section 2.1). The changes involve the syntax of the user-subroutines and user-functions adapted to the programming language of the SolidWorks Cosmos/M [9] program. The 3D-FEM can be

developed with SHELL3T, SHELL4T finite elements, thick plate and membrane elements, triangle or quad, and the ordinary stiffeners with BEAM3D elements [1],[2],[9].

After selecting the external hull shell elements, the following user-subroutines for quasi-static equivalent oblique wave pressure definition are used.

File: press oblique wave.geo (9)C* **OBLIQUE WAVES PRESS [kN,t,m] ACEL,0,0,-9.81 C* - Hw hogg, +Hw sagg parassign, Hw, real, <hw [m]> parassign, NIU, real, <niu [deg]> parassign, DM, real, <dm [m]> *parassign, LL, real,* <*L* [m]> parassign, XF, real, $\langle xf[m] \rangle$ parassign, YF, real, <vf[m]> parassign, TETA, real, <teta [rad]> parassign, PHI, real, <phi [rad]> parassign, RO, real, $< ro [t/m^3] >$ CALLMACRO,IN EL P CALLMACRO, P WAVE, HW,NIU,DM,LL, XF,TETA,YF,PHI,RO A STATIC, G, 0,0,1E-006,1E+010,0,0,0,0, 0,0,0,2,0,0,0,0 R STATIC (10)File: geomacro.geo \$macro, IN EL P

INITSEL, EL ,1,1 ESELPROP, RC, 9,9,1,1 ESELPROP, RC, 14,14,1,1 ESELPROP, RC, 19,19,1,1 \$ENDM

\$macro,P_WAVE,HW,NIU,DM,LL,XF,TETA
,YF,PHI,RO
parassign, csid, int,0
parassign, i, int,0
#loop LB1 ELMAX
parassign, i, int, i+1
#if (exist(EL|i) && listsel(EL|i))
parassign, fnum, int,0
parassign, x, real,XELF(i|fnum|csid)
parassign, y, real,YELF(i|fnum|csid)
parassign, z, real,ZELF(i|fnum|csid)
parassign, z, real,XELF(i|fnum|csid)
parassign, CC,real,x*COS(NIU*PI/180)
+y*SIN(NIU*PI/180)

Annals of "Dunarea de Jos" University of Galati

parassign, LW,real,LL*COS(NIU*PI/180) parassign, Tief,real,DM+(x-XF)*TETA parassign,Tief,real,Tief+(y-YF)*TAN(PHI) parassign,Tief,real,Tief+HW/2*COS(2*PI*CC/LW) parassign, pval, real,(Tief-z)*RO*9.81 parassign, fnum, int,5 #if (pval>0) PEL, i, pval, fnum,i,1,4 #endif #label LB1 \$ENDM

The numerical results deformations and stress distributions over the 3D-FEM model can be plotted based on the menu *Results / Plot*. Using the following commands sequence, the *XY charts* for the stress components can be exported and plotted into a *MS-Excel* file. *Edit / List / Nodes* (11) {*the nodes for the selected panel*}

Results / List / Stress Component Load case number: <1..9> Stress flag: Node Set number: SX/ SY/ SZ/ TXY/ TXZ/ TYZ Set number: P1/ P2/ P3/ VON/ INT/ ERR <OK>

3. THE 3D-FEM MODEL OF AN OFFSHORE BARGE

For the numerical global strength analysis, an offshore barge hull structure is considered with the characteristics in Table 2 [4]. The barge hull is prismatic with rectangular transversal sections and with equivalent uniform mass per unit length. The 3D-FEM model is developed with quadratic and triangle shell elements.

Based on 1D-beam model with own program code P_QSW [4], the equilibrium barge-wave parameters from Table 3 are obtained. The wave height is $h_w = 0, 1, 2, 3, 4$ m (sagging and hogging) and the heading angle is $\mu=0, 15, 30, 45, 60, 75$ deg. Due to the prismatic barge shape, the equilibrium parameters remain unchanged for $h_w \le 4$ m, having vertical sides all around the floating body and the wave elevation is up to the barge height H=4m.

© Galati University Press, 2015

Fascicle XI

Figs.2.a-d present the 3D-CAD barge hull model by Femap/NX Nastran (FNN) [6].

Figs.3.a-e present the 3D-FEM barge

hull model by Femap/NX Nastran (FNN) [6]. Figs.4.a-e present 3D-FEM model by SolidWorks Cosmos/M (SWC) [9] which has been imported using the *NAS2COS* module
[9] for transfer between the two FEM codes.

Table 2. O	ffshore barge ch	aracteristics [4]
L = 97 m	$x_G = 48.5 \text{ m}$	$\rho_{\rm m} = 7.7 {\rm t/m^3}$
B = 33 m	$y_G = 0 \text{ m}$	No.PT=2648
H = 4 m	$z_G = 4.3 \text{ m}$	No.CR=2496
T = 2 m	$h_w = 0, 1, 2, 3, 4 \text{ m}$	No.SF=636
Δ=6562.05 t	μ=0÷75 deg	No.EL=239361
v = 0 m/s	$\delta\mu = 15 \text{ deg.}$	No.ND=308625
$\rho = 1.025 \text{ t/m}^3$	$E=2.1e+11 \text{ N/m}^2$	ELsize=0.1÷0.3m
$g=9.81 \text{ m/s}^2$	v=0.3	No.prop.=17

Table 3. Eq	uilibrium par	ameters barge-wave [4]
μ [deg]	λ[m]	eq. parameters:
0	97.00	<i>h</i> _w =0,1,2,3,4 m
15	93.69	$x_F = 48.50 \text{ m}$
30	84.00	$y_F = 0.00 \text{ m}$
45	68.59	$d_m = 2.00 \text{ m}$

 $\theta = 0.00 \text{ rad}$

 $\phi = 0.00$ rad

48.50

25.11

60

75

Fig.2.a. 3D-CAD, FNN, primitives objects

Annals of "Dunarea de Jos" University of Galati

4. NUMERICAL RESULTS

The results based on 3D-FEM models by Femap/NX Nastran [6] (section 2.1) are presented in the following figures: wave pressure, eq.von.Mises stress, deck, bottom and side panel stress distributions.

© Galati University Press, 2015

Fig.6.d. FNN, h_w =0-4m, μ =0 deg, sagg. (00S) - bottom normal stress [N/mm²]

Fig.6.e. FNN, h_w =0-4m, μ =0 deg, sagg. (00S) - side tangential stress [N/mm²]

Fig.7.a. FNN, h_w =4m, μ =45 deg, hogg. (45H) - wave pressure distribution

43

Annals of "Dunarea de Jos" University of Galati

The results based on 3D-FEM models by SolidWorks Cosmos/M [9] (section 2.2) are presented in the next figures: wave pressure, eq.von.Mises stress, deck, bottom and side panel stress distributions.

Fig.9.a. SWCM, h_w =4m, μ =30 deg, hogg. (30H4) - eq.von.Mises stress [N/mm²]

Fig.9.b. SWCM, h_w =4m, μ =30 deg, hogg. (30H4) - deck normal stress [N/mm²]

© Galati University Press, 2015

45

5. CONCLUSIONS

Based on the numerical results from section 4 for the offshore barge [4] from section 3, in Tables 4 & 5 the maximum stress results.

 Table 4. Maximum stresses [N/mm²] based on

<u>3</u> D)-F	FEM	mod	el by	Fema	p/NX]	Nastra	ın [6]
FNN	h _w	,=4m	Deck((z=4m)	Bottom	n(z=0m)	Side(y=	=16.5m)
`			σ_{vonM}	σ_x	σ_{vonM}	σ_x	σ_{vonM}	$ au_{xz}$
00H	0	hogg	89.48	89.85	88.63	-89.75	89.48	12.84
00S	Ů	sagg	87.95	-88.51	85.89	86.39	87.95	12.72
15H	15	hogg	88.55	88.76	87.70	-88.64	88.55	-15.12
15S	15	sagg	87.01	-87.39	85.00	85.31	87.01	15.10
30H	30	hogg	85.06	84.58	84.24	-84.42	85.06	-17.40
30S	50	sagg	83.50	-83.12	81.64	81.18	83.50	17.48
45H	45	hogg	77.03	74.31	75.81	-74.12	76.55	-19.80
45S	43	sagg	74.94	-72.69	73.42	71.04	74.94	19.92
60H	60	hogg	64.16	48.68	62.59	-50.49	54.61	-20.86
60S	00	sagg	62.79	-46.50	60.94	47.38	53.04	20.86
75H	75	hogg	22.92	-18.97	24.62	17.85	19.53	-7.75
75S				20.82	24.97	-20.57	21.27	7.88
	Table 5. Maximum stresses [N/mm ²] based on							
	3D-FEM model by SolidWorks Cosmos/M [9]							
	FI	EM n	nodel	by So	olidW	orks Co	osmos	/M [9]
SWC	FF h,	EM n w=4m	nodel	l by So (z=4m)	olidW Botton	orks Co n(z=0m)	osmos Side(y=	/M [9] =16.5m)
SWC Case	FI h _ν	EM n _v =4m H - S	$nodel Deck(\sigma_{vonM})$	by So $(z=4m)$	σ_{vonM}	orks Contract σ_x	$Side(y = \sigma_{vonM})$	/M [9] =16.5m) τ _{xz}
SWC Case 00H	FI h _ν	EM n _v =4m H - S hogg	nodel Deck σ_{vonM} 85.01	by So $(z=4m)$ σ_x 88.72	blidW Botton σ_{vonM} 82.20	orks Contract c_x σ_x -87.54	Side(y= σ_{vonM} 84.13	M [9] =16.5m) τ_{xz} 12.85
SWC Case 00H 00S	FI h_v	EM n _v =4m H - S hogg sagg	nodel Deck σ_{vonM} 85.01 83.59	by So $(z=4m)$ σ_x 88.72 -87.33	blidWeb Botton σ_{vonM} 82.20 79.73	orks Contract σ_x σ_x -87.54 84.55	$\frac{Side(y^2)}{\sigma_{vonM}}$ 84.13 82.76	M[9] =16.5m) τ_{xz} 12.85 12.77
SWC Case 00H 00S 15H	FI h_v	EM n v = 4m H - S hogg sagg hogg	nodel Deck σ _{vonM} 85.01 83.59 84.32	by So (z=4m) σ_x 88.72 -87.33 87.46	blidWe Botton σ_{vonM} 82.20 79.73 81.11	orks Co n(z=0m) σ_x -87.54 84.55 -86.34	$Side(y = \frac{\sigma_{vonM}}{84.13}$ 82.76 83.19	/M [9] =16.5m) τ_{xz} 12.85 12.77 -15.07
SWC Case 00H 00S 15H 15S	FI h_v μ 0	EM n v = 4m H - S hogg sagg hogg sagg	nodel Deck(5 _{vonM} 85.01 83.59 84.32 82.85	$ \begin{array}{c} \text{by So} \\ (z=4m) \\ \hline \sigma_x \\ 88.72 \\ -87.33 \\ 87.46 \\ -86.04 \end{array} $	blidWe Botton σ_{vonM} 82.20 79.73 81.11 78.58	orks Co n(z=0m) σ_x -87.54 84.55 -86.34 83.38	Side(y=0.5) Side(y=0.5) σ_{vonM} 84.13 82.76 83.19 81.80	/M [9] =16.5m) τ _{xz} 12.85 12.77 -15.07 15.19
SWC Case 00H 00S 15H	FI h_v μ 0	EM n x=4m H-S hogg sagg hogg sagg hogg hogg	nodel Deck(5 _{vonM} 85.01 83.59 84.32 82.85	by So (z=4m) σ_x 88.72 -87.33 87.46	blidWe Botton σ_{vonM} 82.20 79.73 81.11	orks Co n(z=0m) σ_x -87.54 84.55 -86.34	$Side(y = \frac{\sigma_{vonM}}{84.13}$ 82.76 83.19	/M [9] =16.5m) τ_{xz} 12.85 12.77 -15.07
SWC Case 00H 00S 15H 15S	FI h _ν 0	EM n x=4m H-S hogg sagg hogg sagg hogg hogg	nodel Deck(σ _{vonM} 85.01 83.59 84.32 82.85 82.01	$ \begin{array}{c} \text{by So} \\ (z=4m) \\ \hline \sigma_x \\ 88.72 \\ -87.33 \\ 87.46 \\ -86.04 \end{array} $	BolidWo Botton σ _{vonM} 82.20 79.73 81.11 78.58 77.92	orks Co n(z=0m) σ_x -87.54 84.55 -86.34 83.38	Side(y=0.5) Side(y=0.5) σ_{vonM} 84.13 82.76 83.19 81.80	/M [9] =16.5m) τ _{xz} 12.85 12.77 -15.07 15.19
<i>SWC</i> <i>Case</i> 00H 00S 15H 15S 30H	FI h_v μ 0	EM n v = 4m H - S hogg sagg hogg sagg hogg sagg hogg sagg	nodel <i>Deck</i> (<i>σ</i> _{vonM} 85.01 83.59 84.32 82.85 82.01 79.85	$by Solution{}{} $	BolidWo Botton σ _{vonM} 82.20 79.73 81.11 78.58 77.92		$Side(y^{-2})$ σ_{vonM} 84.13 82.76 83.19 81.80 79.64	M [9] =16.5m) τ_{xz} 12.85 12.77 -15.07 15.19 -17.35
<i>SWC</i> <i>Case</i> 00H 00S 15H 15S 30H 30S	FI h _ν 0	EM n v = 4m H - S hogg sagg hogg sagg hogg hogg hogg	nodel Deck(σ _{vonM} 85.01 83.59 84.32 82.85 82.01 79.85 77.90	$by Solution{} Solution{} Solution{} (z=4m) \\ \hline \sigma_x \\ 88.72 \\ -87.33 \\ 87.46 \\ -86.04 \\ 83.12 \\ -81.61 \\ \hline \end{array}$	blidW Botton σ _{vonM} 82.20 79.73 81.11 78.58 77.92 75.39 70.81	orks Co z(z=0m) σ_x -87.54 84.55 -86.34 83.38 -82.19 79.20	Side(y= \$\side(y= \$\sigma_{vonM}\$ \$84.13 \$82.76 \$83.19 \$81.80 79.64 78.19	$ \frac{[9]}{\tau_{xz}} = 16.5m) $ $ \frac{\tau_{xz}}{12.85} $ $ 12.77 $ $ -15.07 $ $ 15.19 $ $ -17.35 $ $ 17.56 $
SWC Case 00H 00S 15H 15S 30H 30S 45H	FI h_{ν} 0 15 30 45	EM n =4m H - S hogg sagg hogg sagg hogg sagg hogg sagg hogg sagg	Deck \$\sigma_v_{vonM}\$ \$\sigma_v_{onM}\$ \$\sigma_v_{onM}\$ <td>by So ($z=4m$) σ_x 88.72 -87.33 87.46 -86.04 83.12 -81.61 72.69</td> <td>blidW Botton σ_{vonM} 82.20 79.73 81.11 78.58 77.92 75.39 70.81</td> <td>orks Co a(z=0m) -87.54 84.55 -86.34 83.38 -82.19 79.20 -72.39</td> <td>Side(y= σ_{vonM} 84.13 82.76 83.19 81.80 79.64 78.19 70.96</td> <td>$\frac{ M [9]}{\tau_{xz}}$ $\frac{12.85}{12.77}$ $\frac{12.77}{15.07}$ $\frac{15.19}{17.56}$ $\frac{-19.75}{19.75}$</td>	by So ($z=4m$) σ_x 88.72 -87.33 87.46 -86.04 83.12 -81.61 72.69	blidW Botton σ _{vonM} 82.20 79.73 81.11 78.58 77.92 75.39 70.81	orks Co a(z=0m) -87.54 84.55 -86.34 83.38 -82.19 79.20 -72.39	Side(y= σ _{vonM} 84.13 82.76 83.19 81.80 79.64 78.19 70.96	$\frac{ M [9]}{\tau_{xz}}$ $\frac{12.85}{12.77}$ $\frac{12.77}{15.07}$ $\frac{15.19}{17.56}$ $\frac{-19.75}{19.75}$
SWC Case 00H 00S 15H 15S 30H 30S 45H 45S	FI h_v μ 0	EM m w=4m H-S hogg sagg hogg sagg hogg sagg hogg sagg hogg sagg hogg sagg	Deck σ_{vonM} 85.01 83.59 84.32 82.85 82.01 79.85 77.90 75.65 64.94	by So ($z=4m$) σ_x 88.72 -87.33 87.46 -86.04 83.12 -81.61 72.69 -71.02	blidWo Bottom σ_{vonM} 82.20 79.73 81.11 78.58 77.92 75.39 70.81 67.66 53.26	orks Co a(z=0m) σ_x -87.54 84.55 -86.34 83.38 -82.19 79.20 -72.39 69.59	Side(y= σ _{vonM} 84.13 82.76 83.19 81.80 79.64 78.19 70.96 69.40	$\begin{array}{c} /M [9] \\ \hline \tau_{xx} \\ 12.85 \\ 12.77 \\ -15.07 \\ 15.19 \\ -17.35 \\ 17.56 \\ -19.75 \\ 20.03 \end{array}$
SWC Case 00H 00S 15H 15S 30H 30S 45H 45S 60H	FI h_{v} μ 0 15 -300 -45 -600	EM nn v = 4m H - S hogg sagg hogg sagg hogg sagg hogg sagg hogg hogg sagg hog	Deckt Øeckt \$\sigma_{vonM}\$ \$\verts_{vonM}\$	by Sec. $(z=4m)$ σ_x = 88.72 = 87.33 = 87.33 = 87.46 = 86.04 = 83.12 = 81.61 = 72.69 = 71.02 = 48.33	blidWo Botton σ_{vonM} 82.20 79.73 81.11 78.58 77.92 75.39 70.81 67.66 53.26 50.26	orks Co $a(z=0m)$ σ_x -87.54 84.55 -86.34 83.38 -82.19 79.20 -72.39 69.59 -48.22	Side(y= σ _{vonM} 84.13 82.76 83.19 81.80 79.64 78.19 70.96 69.40 49.34	$\begin{array}{c} \mbox{/M} [9] \\ \hline \mbox{τ_{xx}} \\ \hline \mbox{τ_{xx}} \\ \hline \mbox{12.85} \\ \hline \mbox{12.77} \\ \hline \mbox{15.19} \\ \hline \mbox{-17.35} \\ \hline \mbox{17.56} \\ \hline \mbox{-19.75} \\ \hline \mbox{20.03} \\ \hline \mbox{-20.85} \\ \end{array}$
SWC Case 00H 00S 15H 15S 30H 30S 45H 45S 60H 60S	FI h_{ν} 0 15 30 45	EM nn =4m H - S hogg sagg hogg sagg hogg sagg hogg sagg hogg sagg hogg	nodel Deck σ _{vonM} 85.01 83.59 84.32 82.85 82.01 79.85 77.90 75.65 64.94 63.39 22.91	by Sec. $(z=4m)$ σ_x = 88.72 = 87.33 = 87.33 = 87.33 = 87.46 = 86.04 = 83.12 = 81.61 = 72.69 = 71.02 = 48.33 = 45.80	blidWo Botton σ_{vonM} 82.20 79.73 81.11 78.58 77.92 75.39 70.81 67.66 53.26 50.26	orks Co a(z=0m) σ_x -87.54 84.55 -86.34 83.38 -82.19 79.20 -72.39 69.59 -48.22 45.52	$Side(y) = \frac{\sigma_{vonM}}{\sigma_{vonM}}$ 84.13 82.76 83.19 81.80 79.64 78.19 70.96 69.40 49.34 47.00	$\frac{ M [9]}{\tau_{xz}}$ $\frac{12.85}{12.77}$ $\frac{12.85}{12.77}$ $\frac{15.07}{15.19}$ $\frac{17.56}{17.56}$ $\frac{-19.75}{20.03}$ $\frac{-20.85}{21.04}$

The conclusions of the analysis are:

1. Based on the 1D-beam model [4], the shipwave equilibrium parameters are obtained. Using section 2 theoretical approach, the wave pressure is applied on 3D-FEM models. The 3D-FEM models result as being well balanced, ensuring a realistic structural response (section 4).

2. The offshore barge structure is made of standard steel grade type A [10], R_{etf} =235

(σ_{adm} =175 N/mm², τ_{adm} =110 N/mm²). The yielding stress limit criterion is satisfied (Tables 4,5).

3. At oblique waves, due to the changes of the wave length and the relative position ship-wave, the maximum stress values have significant variations function of the heading angle μ =0-75 deg (section 4, Tables 4,5).

4. The barge stress hot-spots are not significant, having a uniform and robust structure.

5. Differences occur between the two 3D-FEM models stress results (Tables 4,5), due to FEM implemented code procedures for stress analysis and elements formulation [6],[9].

6. In the further studies, the theoretical approach from section 2, with ship - oblique wave equilibrium parameters [4], will be tested on more complex ship hull structures.

Acknowledgements

In this study the program codes and the numerical models were developed in the frame of UDJG Galati Research Centre of the Faculty of Naval Architecture.

REFERENCES

- [1]. **Bathe, K.J.**, *"Finite Elementen Methoden"*, Springer Verlag, Berlin, 1990.
- [2]. **Domnisoru, L.**, *"The finite element method applied in shipbuilding"*, Technical Publishing House, Bucharest, 2001.
- [3]. **Domnisoru, L., Dumitru, D., Ioan, A.**, "Numerical methods for hull structure strengths analysis and ships service life evaluation, for a LPG carrier", OMAE 15-20 June 2008, Estoril: 509-518, 2008.
- [4]. **Domnisoru, L.,** "Numerical approach for global ship strengths analysis based on 1Dbeam model under oblique equivalent quasistatic wave loads", The Annals of "Dunarea de Jos" University of Galati, Fascicle XI, Shipbuilding, Galati, 2015 (in press).
- [5]. **Eyres, D.J.,** *"Ship construction",* Butterworth Heinemann, Boston, 2006.
- [6]. FNN, Femap NX Nastran Program, 2007.
- [7]. **Hughes, O.F.,** "Ship structural design. A rationally based, computer-aided optimization approach", The Society of Naval Architects and Marine Engineering, New Jersey, 2000.
- [8]. Lehmann, E., "Guidelines for strength analyses of ship structures with the finite element method", Germanischer Lloyd's, Hamburg, 2000.
- [9]. **SWCM**,SolidWorks Cosmos/M Program,2007. [10]. **xxx**, ABS, BV, DNV-GL, IACS-CSR, Clas-
- sification Societies Structural Rules, 2010-2015.

Paper received on November 30th, 2015