THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE XI – SHIPBUILDING. ISSN 1221-4620, e-ISSN 2668-3156 DOI: https://doi.org/10.35219/AnnUgalShipBuilding/2024.47.04

2024

ASSESSING CYBER RISKS ON BOARD SHIPS: A LITERATURE REVIEW

Costel Ungureanu

"Dunarea de Jos" University of Galati, Faculty of Naval Architecture, Galati, 47 Domneasca Street, 800008, Romania, E-mail: costel.ungureanu@ugal.ro

Carmen Gasparotti

"Dunarea de Jos" University of Galati, Faculty of Naval Architecture, Galati, 47 Domneasca Street, 800008, Romania, E-mail: carmen.gasparotti@ugal.ro

ABSTRACT

Due to the multiple cyber-attacks that resulted in financial losses and personal information breaches, cyber security has become an essential issue for the maritime industry today. This research aims to identify the potential cyber risks associated with operational technology (OT) systems on board ships that influence the cyber security of vessels through a state-ofthe-art literature review. Assessment of the cyber risks on board is carried out according to their likelihood and severity, using a risk score matrix, based on which, they are classified into three categories: high risk, medium risk, and low risk. Based on the classification of cyber risks on board the ship in the three categories, the measures to mitigate them can be defined, to ensure cyber hygiene on board the ship.

Keywords: cyber risk, cyber security, OT systems, score matrix, maritime industry

1. INTRODUCTION

Cyber security has become a vital topic in the last period, for the maritime industry, due to the digital advances made to improve maritime operations. With all the benefits brought, however, the digital operations on board the ship can constitute a significant threat to the safety of the vessel and the crew, without an awareness of the cyber security role and how cyber hygiene can be put into practice [1, 2]. All existing systems on the ship (routers, network cables, IT and OT systems, communication systems, machinery and power control systems, propulsion systems, cargo management systems, and navigation systems) must be protected from any cyber threat, which can have a major impact on ship safety. That is why the cyber risk management associated with the systems on the ship is a major priority today [2]. To address the impact of these cyber risks on shipboard systems and the necessary security

© Galati University Press, 2024

controls, guidelines have been developed by several bodies and companies such as the American Bureau of Shipping (ABS), International Maritime Organization (IMO), iTrust Center for Research in Cyber Security, National Institute of Standards and Technology (NIST), Digital Containership Association (DCA), Baltic and International Maritime Council (BIMCO), Cruise Lines International Association (CLIA), Det Norske Veritas (DNV), International Chamber of Shipping (ICS), International Association of Independent Tanker Owners (INTERTANKO), International Association of Dry Cargo Shipowners (INTERCARGO), Oil Companies International Marine Forum (OCIMF) etc.) [2], [3], [4], [5], [6], [7]. These created guidelines are feasible and cost-effective to be applied by both ship owners and maritime authorities, and they list the attack surfaces and cyber risks associated with shipboard OT systems while presenting a description of the potential scenarios of attack. The large-scale introduction of automation, network-based systems, and the growing dependence on digitization, have led to the focus of cyber risk management in the maritime industry. The paper aims to present a methodology for assessing cyber risks on board the ship to highlight the severity and likelihood of these risks, should they occur, and the framing of cyber risks associated with the OT systems on board the ship by risk levels.

2. LITERATURE REVIEW

Cybersecurity considers how cyber risks are managed, which can affect information and technology, to protect the confidentiality, integrity, and availability of informational and technological assets, with the role of protecting the economy and people's lives [7]. The maritime sector has an essential role in international trade. Considering the veryhigh economic impact of a cyber-attack on sea transport, which means extremely high costs, major damages, and significant disadvantages, ensuring the cyber security of this industry becomes a necessity [2]. Changki et al. (2019) stated that cyber-attack incidents in the maritime industry have led to unquantifiable monetary losses, the loss of intellectual property, and decreased customer trust. However, there is limited research in the literature regarding maritime cyber security. Also, the authors define maritime cyber risk, as the extent to which a technological asset is threatened by a potential event, which could lead to operational, safety, or security failures of the transport at sea, due to corrupt or compromised systems. Following resolution MSC.428 (98), adopted by the IMO in 2017 (Maritime Cyber Risk Management in Safety Management Systems), cyber risk management must be included in the ship's safety management system, considering the objectives and functional requirements of international safety management [2]. IMO also refers to the guidelines

published bv maritime organizations (BIMCO, Intercargo, INTERTANKO, DCA, ICS, etc.), in 2020, regarding cyber security on board ships, focusing on the need for cyber security awareness, highlighting cyber risks, but also recommendations regarding their management, as well as the best measures to be implemented to ensure cyber security on board the ship [4]. On the other hand, DNV (2016), has made recommendations on cyber security measures, based on the guidelines issued by IMO and BIMCO, focusing on the validation mechanisms necessary to increase the resilience of cyber security to shipboard [8]. In 2020, the guide provided by DNV on "cyber security" for class notation focused both on the cyber security of the ship's primary functions (propulsion, navigation, steering, power generation, etc.), as well as on the operational needs of the ship owners [7].

3. RESEARCH METHODOLOGY

Based on the evidence presented above, it follows that it is essential for the maritime industry to address cyber security quickly. This paper wants to identify the main risks (threats) that influence cyber security on board the ship and how they can be evaluated, considering the severity and likelihood of these risks, based on the study of the latest specialized literature. A first step in risk assessment can be to review the potential cyber risks on board the vessel. For this research, the authors studied some guidelines and codes of practice from (1) ABS, (2) IMO, (3) iTrust Center for Research in Cyber Security, (4) NIST, (5) BIMCO, (6) DNV, regarding cyber security in the maritime industry, but also several scientific articles [2], [3], [4], [6], [7]. Several keywords were used "cyber risks on board the ship", "cyber risk management", "cyber-attack in the maritime industry", and "cyber security assurance". From all the literature studied, 15 guides/articles were selected and used as a

data source. Based on the analysis of these materials, a methodology for addressing cyber risks identified on board the ship was established. Given the shipboard OT systems, fundamental to the ship's operations (propulsion systems, communications, navigation, shipboard cargo management, and power control), which are vulnerable to cyber-attacks, either as a result of any deficiencies of these systems, either due to the network deficiencies to which they are connected, the potential cyber risks on board the ship were identified, from the studied literature, and classified, according to their severity and likelihood of occurrence [1].

4. CYBER RISK ASSESSMENT ON **BOARD SHIP**

OT systems are connected to the Internet for communications, operations, etc. This interconnectivity between shipboard OT systems and the IT network can be the entry point for hackers seeking to damage or gain access to existing shipboard systems. The potential cyber risks, corresponding to the OT systems on board the ship, are presented in Table 1.

Tab	ole 1 Cyber risks	s of shipboard
systems	(processing acco	ording to [1])

ОТ (the system
OT systems (proce	ssing according to [1])	-load control	-malware attack which
Shipboard OT	Potential cyber risk	room	damages/compromises
system		100111	
1. Propulsion			data or blocks access to
and nowor			the respective device,
and power			-ransomware that blocks
control systems			access to data
- the energy	-malware attack through	4. Navigation	
management	USB ports that are in-	system	
system	fected to activate the	-integrated navi-	-Man-in-the-middle
- the generators	data transfer right,	gation system	(MITM) attack, which
- the fuel supply	-Man-in-the-middle		allows the hacker to
system and the	(MITM) attack, which		read/modify a conversa-
engine control	allows the hacker to		tion,
system	read/modify a conversa-		-arbitrary overwriting of
-	tion		files and remote code
2. The commu-			execution, a risk that
nication system			requires improved secu-

© Galati University Press, 2024

•	-satellite com-	-malware attack through
5	munication sys-	phishing e-mails,
5	tem	-exploiting vulnerabili-
-	- the integrated	ties in outdated VSAT
5	communications	software, by hackers
-	system	using weak points/errors
l		in the operating system
)		to gain unauthorized
-		access to re-
;		sources/compromise
-		data/take control over
•		the system,
-		-script exploits to attack
-		the website server,
		- interceptions by ear
_	- wireless local	- Denial of Service
	area network	(DoS) attack, which in-
	(WLAN)	terrupts the network ser-
t		vice,
3		- interceptions by ear,
-		- faisification of access
7	2 Load man	points
ı	5. Loau man-	
•	tems	
) 1	- the ship's bal-	-Phishing emails,
l	last system	-malware attack, which
		damages/compromises
		data or blocks access to
		the system
	-load control	-malware attack, which
	room	damages/compromises
		data or blocks access to
		the respective device,
	1	· · · · ·
- 1		-ransomware that blocks
		-ransomware that blocks access to data
1	4. Navigation	-ransomware that blocks access to data
1	4. Navigation system	-ransomware that blocks access to data
1 - 2	4. Navigation system -integrated navi-	-ransomware that blocks access to data
1 -	4. Navigation system -integrated navi- gation system	-ransomware that blocks access to data -Man-in-the-middle (MITM) attack, which
1 - ?	4. Navigation system -integrated navi- gation system	-ransomware that blocks access to data -Man-in-the-middle (MITM) attack, which allows the hacker to
1	4. Navigation system -integrated navi- gation system	-ransomware that blocks access to data -Man-in-the-middle (MITM) attack, which allows the hacker to read/modify a conversa-
1 - -	4. Navigation system -integrated navi- gation system	-ransomware that blocks access to data -Man-in-the-middle (MITM) attack, which allows the hacker to read/modify a conversa- tion, achitenty overwriting of
1 - - 1) -	4. Navigation system -integrated navi- gation system	-ransomware that blocks access to data -Man-in-the-middle (MITM) attack, which allows the hacker to read/modify a conversa- tion, -arbitrary overwriting of files and remote code
1 - - -	4. Navigation system -integrated navi- gation system	-ransomware that blocks access to data -Man-in-the-middle (MITM) attack, which allows the hacker to read/modify a conversa- tion, -arbitrary overwriting of files and remote code execution a risk that

35

	rity measures	
-global position-	-GPS spoofing/jamming	
ing system (GPS)	1 00 0	
- the electronic	-malware attack through	
map display and	USB ports that are in-	
information sys-	fected to activate the	
tem	data transfer right,	
	-Denial of Service (DoS)	
	attack, which interrupts	
	the network service,	
	-spoofing, by which the	
	return address of sent e-	
	mails is falsified, hiding	
	the identity of the real	
	address from which the	
	message originates	
- the automatic	-spoofing, by which the	
vessel identifica-	return address of sent e-	
tion system (AIS)	mails is falsified, hiding	
	the identity of the real	
	address from which the	
	message originates	
	-software manipulation,	
- the radar sys-	-Man-in-the-middle	
tem	(MITM) attack, which	
	allows the hacker to	
	read/modify a conversa-	
	tion,	
	-malware attack, which	
	damages/compromises	
	data or blocks access to	
	the system	
- the global	-denial of service (DoS)	
maritime safety	attack, which denies	
system	legitimate users access	
	to a resource (access to a	
	website, a network, etc.),	
1	-talsification of data	

The assessment of cyber risks on board the ship can be carried out, taking into account their impact (the effect produced if a cyber risk occurs) and the likelihood (the chance that the cyber risk will occur), with the possibility of identifying the places where the security controls are needed.

When shipboard systems are updated or new software is installed, risk assessment becomes a necessity. To be able to assess the severity (impact) and likelihood of a cyber risk, a risk score matrix is usually used, which allows the calculation of this score for each cyber risk in the ship's OT system (risk score = the product between the severity score and likelihood). Depending on the complexity of the cyber-attack on the ship's systems and the attacker's access to resources and attack surface, the risk likelihood score can be decided. The severity of the risk can be determined depending on the extent of the damage caused to the environment, and the loss of integrity, finances, and confidentiality, which may result from a cyber-attack [1], [11]. Table 2 shows how the likelihood and severity scores are evaluated.

 Table 2 Definition of likelihood and severity of cyber risks (processing according to [1])

Score	Level	Likelihood of
Score	Lever	cyber risk
4	High	The attack can be
		carried out from
		the external net-
		work, either re-
		motely or with
		physical access to
		open ports and
		systems on the
		ship, with minimal
		technical
		knowledge and
		publicly available
		resources.
3	Medium-	The attack can be
	high	carried out with
		basic technical
		knowledge, with-
		out modifying the
		exploits, the at-
		tacker being in the

		internal or external
		network.
2	Medium-	The attack can be
	low	carried out with
		moderate technical
		knowledge, with
		minor changes to
		the exploits, the
		attacker being in
		the internal or ex-
		ternal network.
1	Low	The attack can be
		carried out with
		advanced technical
		knowledge, by
		chaining several
		exploits, with
		physical or remote
		access to the OT
		systems on the
		ship, where there is
		restricted access.
Score	Level	Cyber risk severi-
		ty
4	Critical	Consequences of a
		cyber-attack can be
		on the ship, ship
		operations, and
		crew, and these
		could be: loss of
		the ship, data, op-
		erating systems and
		resources may be
		unavailable, affect-
		ing all operations,
		ing all operations, which could lead to
		ing all operations, which could lead to collision, imbal-
		ing all operations, which could lead to collision, imbal- ance, and sinking
		ing all operations, which could lead to collision, imbal- ance, and sinking of the ship.
3	Severe	ing all operations, which could lead to collision, imbal- ance, and sinking of the ship. The consequences
3	Severe	ing all operations, which could lead to collision, imbal- ance, and sinking of the ship. The consequences of the cyber-attack
3	Severe	ing all operations, which could lead to collision, imbal- ance, and sinking of the ship. The consequences of the cyber-attack can lead to unau-
3	Severe	ing all operations, which could lead to collision, imbal- ance, and sinking of the ship. The consequences of the cyber-attack can lead to unau- thorized access to
3	Severe	ing all operations, which could lead to collision, imbal- ance, and sinking of the ship. The consequences of the cyber-attack can lead to unau- thorized access to the ship's network,
3	Severe	ing all operations, which could lead to collision, imbal- ance, and sinking of the ship. The consequences of the cyber-attack can lead to unau- thorized access to the ship's network, data system, and
3	Severe	ing all operations, which could lead to collision, imbal- ance, and sinking of the ship. The consequences of the cyber-attack can lead to unau- thorized access to the ship's network, data system, and other resources that

-		
		operations, such as communications, propulsion, naviga- tion, disruption of the ship-shore con- nection, etc.
2	Moderate	The consequences of the cyber-attack can cause damage to the ship or car- go, the authorized functionality of the networks can be affected, the lack of availability of systems or applica- tions, the disrup- tion of the opera- tions on the ship, a deceptive commu- nication between the systems on the ship.
1	Light	The consequences of the cyber-attack may consist of un- authorized access to the ship's sys- tems, which may lead to a data breach.

Cyber risks associated with shipboard OT systems (Table 1) are assessed based on assigned scores for the likelihood and severity (Table 2). The risk score is obtained by the product of the likelihood score and the severity score, which is assigned to each cyber risk of the OT systems. With the help of the 4 x 4 score matrix, the risk scores are established, which allow the classification of the cyber risks associated with the OT systems on the ship, being classified into three categories: high risk (score: $12 \div 16$), medium risk (score: $3 \div 9$) and low risk (score: $1 \div 2$) (Table 3).

Likelihoo	d	Severity			
		Light (1)	Light (1) Moderate (2) Severe (3) Critical (
Low	(1)	1	2	3	4
Medium- low	(2)	2	4	6	8
Medium- high	(3)	3	6	9	12
High	(4)	4	8	12	16

 Table 3 Score matrix of cyber risks

Based on the literature research, it appears that most shipboard OT systems on board the ship are high risk (red), their vulnerabilities can be exploited quite easily by hackers, thus disrupting the operations on the vessel. Shipboard OT systems, which present medium risk (yellow), can be attacked by hackers to a lesser extent, which leads to the unavailability of the resources and the network on board the ship. Low-risk systems (green) can be attacked, but with lower chances, these attacks affect both the safety of the vessel and that of the ship's crew/cargo. Each risk is evaluated based on the vulnerabilities of the systems, the flow of data between the systems, the degree of knowledge of the functionality of the systems, and the dependence on the Internet connection [12], [14]. Even if some cyber risks are common to several shipboard systems, the risk scores differ, due to the difficulty of exploitation, attack surfaces, and the level of participation in the OT and IT network, which varies from one system to another (Table 4) [1].

 Table 4 Systems on board the ship and their classification in risk categories (processing according to [1])

cessing according to [1])				
OT systems	Risk	Cyber risk		
	level	type		
ship ballast sys-	High	Malware at-		
tem, load control		tack via Phish-		
room, electronic		ing emails,		
chart display,		Denial-of-		
and information		Service (DoS)		
system, radar		attack, Mal-		

system, global positioning sys- tem (GPS), au- tomatic vessel identification system (AIS), satellite commu- nication system, integrated com- munications, fuel supply and engine control systems	M	ware intrusion, Ransomware, GPS spoofing
satellite commu- nication system, integrated com- munication sys- tem, wireless local area net- work (WLAN), global position- ing system (GPS), automat- ic vessel identi- fication system (AIS), radar system, global maritime safety system, naviga- tion system in- tegrity	Medium	Spoofing, Cross-site scripting, eavesdropping, Man-in-the- middle (MITM) at- tacks, exploit- ing vulnerabil- ities in old software ver- sions
Propulsion and power control systems	Low	Man-in-the- middle (MITM) attack

Placing cyber risks in one of the three categories allows the definition of measures to mitigate these risks. According to the iTrust Center for Research in Cyber Security guidelines, mitigation actions can be applied to shipboard OT systems to manage cyber risks [6], [14], [15]. These mitigating actions come to the aid of ship owners, who can determine the cyber hygiene of their ships, based on three levels of security: level 1, which includes cyber security measures recommended for managing high risks (12÷16),

and which must be implemented on board the ships; level 2, includes cyber security measures recommended for the management of medium risks $(3\div9)$, and which assume the existence on board the ship of the security controls mentioned for this level; level 3, which includes cyber security measures recommended for managing low-level risks $(1\div2)$, and which are suggested to be implemented on board the ship.

5. CONCLUSIONS

The shipboard OT systems have an important role in the operation of the ships, they are permanently interconnected based on internet connections and therefore their protection from cyber-attacks becomes essential. Cyber risks identified for OT systems can be avoided by applying appropriate security controls and ensuring the cyber hygiene of ships. These risks are evaluated using the risk score matrix, depending on the probability that cyber risks occur and the impact caused by their occurrence. Depending on the risk score obtained, cyber risks fall into three categories: high risk, medium risk, and low risk, based on which measures to mitigate them can be defined. Through periodic assessment of the cyber risks to which the OT systems on board the ship are subjected, ship owners understand how they can discover the vulnerabilities within these systems, thus having a better picture of the impact of these risks and being motivated to apply the security measures that are required for each case.

REFERENCES

- Dumbala, R., Rajaram, P., Goh Voon Vei, M. and J. Zhou, "A Cyber Risk Study in Shipboard OT Systems". Society of Naval Architects and Marine Engineers Singapore 40th Annual Journal 2020/2021, Sustainable Development & Digital Innovation, 2021, pp.48-60.
- [2]. International Maritime Organization, Guidelines on Maritime Cyber Risk Management, 2017. Accessed: Aug. 27, 2024. [Online].

© Galati University Press, 2024

Available:

https://www.cdn.imo.org/localresources/en/O ur-

Work/Security/Documents/Resolution%20M SC.428(98).pdf

- [3]. American Bureau of Shipping. "Guide for Cybersecurity Implementation for the Marine and Offshore Industries ABS Cyber safety", Vol 2, 2021. Accessed: Aug. 27, 2024. [Online]. Available: https://ww2.eagle.org/content/dam/eagle/rule s-and-guides/current/other/251-guide-forcybersecurity-implementation-for-themarine-and-offshore-industries---abscybersafety%C2%AE-volume-2/251cybersafety-v2-cybersecurity-guideaug23.pdf
- [4]. BIMCO, Chamber of Shipping of America, Digital Containership Association, International Association of Dry Cargo Shipowners (INTERCARGO), InterManager, International Association of Independent Tanker Owners (INTERTANKO), International Chamber of Shipping (ICS), International Union of . Insurance (IUMI), Oil Companies International Marine Forum (OCIMF), Superyacht Builders Association (Sybass) and World Shipping Council (WSC), "The Guidelines on Cyber Security Onboard Ships", 2020Accessed: Aug. 27, 2024. [Online]. Available: https://www.bimco.org/about-us-and-ourmembers/publications/the-guidelines-oncvber-security-onboard-ships
- [5]. Det Norske Veritas, DNV GL Cyber secure class notation, 2020. Accessed: Aug. 27, 2024. [Online]. Available: https://www.traficom.fi/sites/default/files/me dia/file/5.%20DNV%20GL%20Cyber%20se cure%20Class%20Notation%20Information %20Day%20Finland%20handout.pdf
- [6]. iTrust Centre for Research in Cyber Security. "Guidelines for cyber risk management in shipboard operational technology systems", 2022 Accessed: Aug. 27, 2024. [Online]. Available: https://itrust.sutd.edu.sg/research/projects/m aritime-cyber/
- [7]. National Institute of Standards and Technology, "Framework for Improving Critical Infrastructure Cybersecurity", 2018. Accessed: Aug. 27, 2024. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/cswp/nist.c swp.04162018.pdf
- [8]. Det Norske Veritas, "Cyber Security Resilience Management for Ships and Mobile Offshore Units in Operation", 2016. Accessed: Aug. 27, 2024. [Online]. Available:

https://www.dnv.com/siteassets/images/pdf-documents/dnv-gl-rp-0496.pdf

- [9]. Boyes, H. and Isbell, R. "Code of Practice Cyber Security for Ships", 2017, Accessed: Aug. 27, 2024. [Online]. Available: https://www.safety4sea.com/wpcontent/uploads/2017/09/UK-Cyber-Security-Code-of-Practice-for-ships-2017_09.pdf
- [10]. Parka, C., Shib, W., Zhangb, W., Kontovas, C., Changa, C. H. "Cybersecurity in the maritime industry: a literature review", *Proceedings of the International Association* of Maritime Universities (IAMU) Conference, 2019, pp.79-86.
- [11]. Cassi, E., Scialla, P. and Cavanna, J.P. "Tackling complexity: Protecting against cyber risk in the marine industry". Lloyd's Register Group Resilience Engineering, pp. 1-14, 2018. Accessed: Aug. 27, 2024.
 [Online]. Available: https://www.ccrzkr.org/files/documents/workshops/wrshp05 0919/Docs07_en.pdf

- [12]. Schaik, P., Jeske, D., Onibokun, J., Coventry, L., Jansen, J. and Kusev, P. "Risk perceptions of cyber-security and precautionary behavior", *Computers in Human Behavior*, vol. 75, no. 1, pp.547-559, 2017.
- [13]. Craigen, D., Diakun-Thibault, N. and Purse, R. "Defining cybersecurity", *Technology Innovation Management Review*, vol. 4, no.10, pp.13-21, 2014.
- [14]. Svilicic, B., Kamahara, J., Rooks, M. and Yano, Y. "Maritime Cyber Risk Management: An Experimental Ship Assessment". *The Journal of Navigation*, vol.72, no.5, pp.1108-1120, 2019.
- [15]. Caponi, S. and Belmont, K. "Maritime cybersecurity: A growing threat goes unanswered", *Intellectual Property and Technol*ogy Law Journal, vol. 27, no. 1, pp.16-18, 2015.

Paper received on October 27th, 2024