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ABSTRACT

The paper proposes an approach of a 1DOF (1 Degree Of Freedom)
dynamic model of an elastic mechanical system with structural damping
rheologically modeled as a Zener model. This system is perturbated by a

harmonic force F(t):Hsinu)t, the dynamic parameter being the

amplitude of the forced steady-state vibration and the transmitted force to
the base. The parametric dynamic characteristic that is drawn and

analyzed is the amplitude factor A(Q,S). This study is useful to validate

and/or to assess the viscous materials with Standard Linear Solid (SLS)
Model behavior.

KEYWORDS: steady-state vibration, structural damping, SLS model,
amplitude factor

We consider a simple 1DOF (1 Degree Of

1. INTRODUCTION Freedom) mechanical system composed of a

single mass m supported by a viscoelastic
element VEM as in figure 1. The 1DOF system is

F(t) perturbated by a variable force F(t), the vertical
forced steady-state vibration of the mass m being

described by the law of motion (t) Through the

m viscous-elastic element VEM, the inertial dynamic

[ (1) force of the mass m is transmitted to the base. The
VEM dynamic parameters of the displacement z ¢ (t) and

transmitted force Fr(t) are determined by the
rheological characteristics of the VEM.

F(1) 2. ZENER RHEOLOGICAL MODEL
T Basic rheological models and complex
rheological models are described in the books on

Fig. 1. Simplified scheme for 1DOF mechanical viscoelasticity [1] [2]. The rheological characteristics
system supported by a viscoelastic element of different viscoelastic materials can be described by

the basic conceptual models of linear spring (Hooke)
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and linear dashpot (Newton), see figure 2.

!

a) b)
Fig. 2. Basic rheological elements
a)linear massless spring (Hooke model)
b)linear viscous dashpot (Newton model)

Different rheological models can be obtained by
the combination, in series and/or in parallel, of
springs and dashpots. The simplest rheological
viscoelastic models are Maxwell model and Kelvin-
Voigt model, see figure 3.

a) b)
Fig. 3. Simple rheological elements
a)Maxwell model (spring - series - dashpot)
b)Kelvin-Voigt model (spring - parallel - dashpot)

The simple rheological models M and K-V
cannot describe at the same time all the viscoelastic
properties: M model don't describe creep or recovery
and K-V model don't describe stress relaxation. The
Standard Linear Solid (SLS) model can describe both
phenomena and is the most used to accurately
describe the overall behavior of a elastic mechanical
system under a given set of loading conditions. The
SLS model, known as well as Zener model, is
composed from a Hooke model in parallel with a
Maxwell model, as in figure 4.
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Fig. 4. Rheological Zener model
(Hooke-Maxwell model)

3. DYNAMIC MODEL OF 1DOF
MECHANICAL SYSTEM WITH

ZENER VISCOUS DAMPING
We consider a 1DOF mechanical system
supported by a viscoelastic element as in figure 5.
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Fig. 5. Calculus scheme for the dynamic
characteristics of 1DOF mechanical system

The moving equations of the steady-state
forced vibration can be written as follows [3]:

m'z'+b2(z'f —y)-i-klZf = F(t) o
bo(25 —¥)=kay
Considering the perturbating force as

harmonic, F(t): Fo sinwt, the first equation of
the system (1) becomes

. by, ok Fo .

If+—=\lf—-y)+—zf =—=sinot 2

f m(f y) ol O
or

. ( ) 2 b

i +2nlzs —y)+pzs =hsinot , (3)

where:
by
2m
model)

/k
p= L natural (angular) frequency of
m

the ideal elastic system (Hooke model)

n= is the damping factor (Maxwell

bo . .
G= = - damping ratio
beritical  2vmk
b
o= k2_0) = 2¢Q) - structural damping ratio
2

Q -9 relative (angular) frequency

If we consider the second equation of (1),
the differential moving equation can be written
as follows:

mZ+koy+kyzs =Fysinot (4)
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4. AMPLITUDE OF THE FORCED

STEADY-STATE VIBRATION
Since 1DOF mechanical system has linear

viscoelastic elements, the displacement zf(t)

of the vibrating mass m and the displacement
y(t) of the serial point linkage P of Maxwell
model have harmonic time variation

2¢ (t)= At sin(ot — o)
y(t)= Ay sin(ot - o)

where
As - displacement amplitude of mass m

(5)
(6)

Ay - displacement amplitude of point P
¢ - phase shift zy « F
o - phase shift y— F

With the displacements time functions (5)
and (6), the differential equation (4) becomes:

— mA®? sin(ot — g )+ ko Ay sin(ot —a)+

. _ ™
+kq Asin(ot - @g ) = Ry sinot

The dynamic balance differential equation
of the point P can be written:

bowAs cos (mt -0Q )—

8
—bywAy cos(wt —a)=koAy sin(ot— o) ®

Equations (7) and (8) are equivalent to a
system of four trigonometric equations whose
solution is (Af 00, Ay ,a).

The amplitude of the steady-state forced
vibration of the mass m can be written [4]

2 2
As _i N“+8

kg N2(1—QZ)2 +82(N +1—QZ)2

9)

or
As :E_O.A(Q,S,N):Ast.A(g,a,N), (10)
1

Fo

where:
Ast ==
1
A(Q,8,N) - amplitude factor

is the static displacement

N2 +82
N2(1—92)2+62(N +1—Qz)2

AQ,5,N)= (12)
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The parametric relation (10) is used to

determined
amplitude factor

the

variation
A function of the relative

graphs

of the

angular frequency € for different values for
ratio

structural

damping

coefficients ratio N .

AQ)
S

o = M W ks OO - 0 O

3

and elasticity

5. AMPLITUDE FACTOR
DIAGRAMS OF 1DOF SYSTEM
FORCED VIBRATION
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Fig. 6. Amplitude factor diagram
Zener model - N=0 (Hooke model)
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Fig. 7. Amplitude factor diagram
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Fig. 8. Amplitude factor diagram
Zener model - N=0.5
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Fig. 9. Amplitude factor diagram
Zener model - N=1
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Fig. 11. Amplitude factor diagram
Zener model - N—o (Voigt-Kelvin model)

6. CONCLUSIONS
Analyzing the amplitude factor parametric
relation (11), we can observe that:
a)for N=0 or 5=0 (meaning Maxwell model
cancellation), Zener model becomes Hooke
model; the diagram is shown in figure 6 and the
amplitude factor is as follows:

1
An=0(Q)= Azs:o(Q)=—2 (12)
1o
b)for N—oo (in Maxwell model, spring is

replaced by a rigid connection, obtaining a
viscous Newton model), Zener model becomes
Voigt-Kelvin model; the diagram is shown in
figure 11 and figure 12 and the amplitude factor
is as follows:

1

\/(1—92)2+52

AN 50 (Q,8)= (13)
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Fig. 10. Amplitude factor diagram
Zener model - N=2
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Fig. 12. Amplitude factor diagram detail
Zener model - N—o (Voigt-Kelvin model)
c)for simple rheological Hooke model, the

amplitude resonance point is Q=1, see figure 6;
d)for simple rheological Voigt-Kelvin model,
the amplitude resonance point is Q=1, see
figure 11 and figure 12; if we consider a

structural damping 8+#0, the value for the
amplitude factor at resonance is:
Age_soKnance(S)zl (14)

)

e)for complex rheological Zener model, the
amplitude resonance points are obtaining for
Q>1 and it's value depends on the elasticity
coefficients ratio N, see figures 7 to 10.
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