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ABSTRACT 
 

The paper proposes an approach of a 1DOF (1 Degree Of Freedom) 
dynamic model of an elastic mechanical system with structural damping 
rheologically modeled as a Zener model. This system is perturbated by a 
harmonic force   tsinHtF  ,  the dynamic parameter being the 
amplitude of the forced steady-state vibration and the transmitted force to 
the base. The parametric dynamic characteristic that is drawn and 
analyzed is the amplitude factor  ,A . This study is useful to validate 
and/or to assess the viscous materials with Standard Linear Solid (SLS) 
Model behavior. 

 
KEYWORDS: steady-state vibration, structural damping, SLS model, 
amplitude factor 

 

1. INTRODUCTION 
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Fig. 1. Simplified scheme for 1DOF mechanical 
system supported by a viscoelastic element 

 

We consider a simple 1DOF (1 Degree Of 
Freedom) mechanical system composed of a 
single mass m supported by a viscoelastic 
element VEM as in figure 1. The 1DOF system is 
perturbated by a variable force  tF , the vertical 
forced steady-state vibration of the mass m being 
described by the law of motion  tz f . Through the 
viscous-elastic element VEM, the inertial dynamic 
force of the mass m is transmitted to the base. The 
dynamic parameters of the displacement  tz f  and 

transmitted force  tFT  are determined by the 
rheological characteristics of the VEM. 

2. ZENER RHEOLOGICAL MODEL 
Basic rheological models and complex 

rheological models are described in the books on 
viscoelasticity [1] [2]. The rheological characteristics 
of different viscoelastic materials can be described by 
the basic conceptual models of linear spring (Hooke) 
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and linear dashpot (Newton), see figure 2. 
 

E

 
a)  b) 

Fig. 2. Basic rheological elements 
a)linear massless spring (Hooke model)  

b)linear viscous dashpot (Newton model) 
 

Different rheological models can be obtained by 
the combination, in series and/or in parallel, of 
springs and dashpots. The simplest rheological 
viscoelastic models are Maxwell model and Kelvin-
Voigt model, see figure 3. 
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 a)   b) 

Fig. 3. Simple rheological elements 
a)Maxwell model (spring - series - dashpot) 

b)Kelvin-Voigt model (spring - parallel - dashpot) 
 

The simple rheological models M and K-V 
cannot describe at the same time all the viscoelastic 
properties: M model don't describe creep or recovery 
and K-V model don't describe stress relaxation. The 
Standard Linear Solid (SLS) model can describe both 
phenomena and is the most used to accurately 
describe the overall behavior of a elastic mechanical 
system under a given set of loading conditions. The 
SLS model, known as well as Zener model, is 
composed from a Hooke model in parallel with a 
Maxwell model, as in figure 4. 
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Fig. 4. Rheological Zener model 
(Hooke-Maxwell model) 

3. DYNAMIC MODEL OF 1DOF 
MECHANICAL SYSTEM WITH 

ZENER VISCOUS DAMPING 
We consider a 1DOF mechanical system 

supported by a viscoelastic element as in figure 5. 
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Fig. 5. Calculus scheme for the dynamic 
characteristics of 1DOF mechanical system 

 
The moving equations of the steady-state 

forced vibration can be written as follows [3]: 
 

   
 





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ykyzb
tFzkyzbzm

2f2
f1f2




  (1) 

 
Considering the perturbating force as 

harmonic,   tsinFtF 0  , the first equation of 
the system (1) becomes 
 

  tsin
m
Fz

m
kyz

m
bz 0

ff
2

f    (2) 

or 

  tsinhzpyzn2z f
2

ff    , (3) 
where: 

m2
bn 2  is the damping factor (Maxwell 

model) 

m
kp 1  - natural (angular) frequency of 

the ideal elastic system (Hooke model) 

mk2
b

b
b

critical
2   - damping ratio 




 2
k

b

2
2  - structural damping ratio 

p


  - relative (angular) frequency 

 
If we consider the second equation of (1), 

the differential moving equation can be written 
as follows: 
 

tsinFzkykzm 0f12    (4) 
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4. AMPLITUDE OF THE FORCED 
STEADY-STATE VIBRATION 
Since 1DOF mechanical system has linear 

viscoelastic elements, the displacement  tz f  
of the vibrating mass m  and the displacement 
 ty  of the serial point linkage P of Maxwell 

model have harmonic time variation 
 

   0ff tsinAtz     (5) 

    tsinAty Y    (6) 
 
where 

fA  - displacement amplitude of mass m 

YA  - displacement amplitude of point P 

0  - phase shift fz ↔ F  

  - phase shift y ↔ F  
 

With the displacements time functions (5) 
and (6), the differential equation (4) becomes:  
 

   
  tsinFtsinAk

tsinAktsinmA

001

Y20
2


    (7) 

 
The dynamic balance differential equation 

of the point P can be written: 
 

 
   



tsinAktcosAb

tcosAb

Y2Y2

0f2     (8) 

 
Equations (7) and (8) are equivalent to a 

system of four trigonometric equations whose 
solution is   ,A,,A Y0f . 

The amplitude of the steady-state forced 
vibration of the mass m can be written [4] 
 

   222222

22

1
0

f
1N1N

N
k
FA




   (9) 

or 

   N,,AAN,,A
k
FA st

1
0

f   , (10) 

where: 

1
0

st k
FA   is the static displacement 

 N,,A   - amplitude factor 
 

 
   222222

22

1N1N

NN,,A



 (11) 

The parametric relation (10) is used to 
determined the variation graphs of the 
amplitude factor A  function of the relative 
angular frequency  ,  for different values for 
structural damping ratio   and elasticity 
coefficients ratio N .  

5. AMPLITUDE FACTOR 
DIAGRAMS OF 1DOF SYSTEM 

FORCED VIBRATION 
 

 
 

Fig. 6. Amplitude factor diagram 
Zener model - N=0 (Hooke model) 

 

 
 

Fig. 7. Amplitude factor diagram 
Zener model - N=0.25 

 

 
 

Fig. 8. Amplitude factor diagram 
Zener model - N=0.5 
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Fig. 9. Amplitude factor diagram 
Zener model - N=1 

 

 
 

Fig. 11. Amplitude factor diagram 
Zener model - N→∞ (Voigt-Kelvin model) 

 

 
 

Fig. 10. Amplitude factor diagram 
Zener model - N=2 

 

 
 

Fig. 12. Amplitude factor diagram detail 
Zener model - N→∞ (Voigt -Kelvin model) 

 
 

 

6. CONCLUSIONS 
Analyzing the amplitude factor parametric 

relation (11), we can observe that:  
a)for N=0 or =0  (meaning Maxwell model 
cancellation), Zener model becomes Hooke 
model; the diagram is shown in figure 6 and the 
amplitude factor is as follows: 
 

   
200N

1

1AA


    (12) 

 
b)for N→∞ (in Maxwell model, spring is 
replaced by a rigid connection, obtaining a 
viscous Newton model), Zener model becomes 
Voigt-Kelvin model; the diagram is shown in 
figure 11 and figure 12 and the amplitude factor 
is as follows: 
 

 
  222

N
1

1,A


  (13) 

 

c)for simple rheological Hooke model,  the 
amplitude resonance point is =1,  see figure 6; 
d)for simple rheological Voigt-Kelvin model, 
the amplitude resonance point is =1,  see 
figure 11 and figure 12; if we consider a 
structural damping ≠0, the value for the 
amplitude factor at resonance is: 
 

 



1Aresonance

KV   (14) 

 
e)for complex rheological Zener model, the 
amplitude resonance points are obtaining for 
1 and it 's value depends on the elasticity 
coefficients ratio N, see figures 7 to 10. 
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