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ABSTRACT 
 

The paper presents the special joint systems type anchor - concrete. The study 
was conducted with the hypothesis according to which the steel anchors are 
provided through longitudinal cuts in the form of "fringe" as segments evenly 
arranged at the end of the joint. 
These are expanded by the initial assembly through an inner cone extracted 
during the fixation process. Steel anchors have linear elastic behavior, both 
on axial direction and the lateral direction the vertical direction of the 
commit request. The anchor-concrete interface separation strength is provided 
only by axial pull friction force without a slipping or sliding trend. 
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1. INTRODUCTION 

For fastening, assembling and installing of 
industrial, power and processing equipments 
operation in dynamic mode, there are often used 
highly efficient expandable steel anchors systems 

It achieves longitudinal expansion of 
systems located at one end of the anchor, when 
the fastening bolt pulls out one truncated end. 
This one is larger in diameter than the cylindrical 
anchor inside. Segmented elements by expanding 
and plastic deformation get a secure mounting 
hole formed in the hardened concrete. 

Fixing at the anchor end is based on 
sufficient increase of frictional force Ff ≤  N, 
where  is the coefficient of frictional force at 
slip, and N is the resultant of all the pressing 
forces Ni on the surface of the concrete segments, 
i.e. N =   Ni. 

Dynamic and fatigue behavior of fastening 
systems with anchors that are either elastically  
 
 

 
 
axial or transversely deformed show clearly the 
dry friction process.[1] 

This study aims to highlight the behavior of 
a joint system with a steel anchor, fixed in 
concrete by expanding, under unidirectional 
dynamic loads with force F(t)=m0r2sint. 

Based on the dynamic model and the 
experimental results, the characteristics expressed 
by the fastening forces   and 
operating modes can be evaluated. 
 

2. EXPERIMENTAL SYSTEM 
SCHEMATIZATION 

Figure 1 is a schematic drawing of the 
expanded steel anchors one end 1, with a central 
bolt M20, length 25 cm, and the free end 2 is 
provided with a fastening system of the vibrator 3 
provided with two eccentric masses involved and 
which generate a disruptive force only in the 
axial direction. The values of physical quantities 
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are:      E = 2.1  105 N/mm2, l = 25 cm, d = 2 cm 
for bolt. 

 

 
Fig 1 Expanded steel anchor 

 
The full dynamic linear elastic model with 

parameters m, k, cech is driven by the force                
F = F0 sin ωt, where the amplitude of the force is 
dependent on the angular velocity  so            

, where m0r is the total static 
moment of unbalanced masses in rotation with .   
Figure 2 shows the model with standard notation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 Dynamic model 
 

3. DYNAMIC BEHAVIOUR OF 
HARMONIC FORCE APPLIED 

AXIALLY 
The differential equation of motion can be 

written as: 
 

            (1) 
 
with stationary vibration solution as the right 
member, of the form: 
 

                       (2) 
 

The dry friction force  
has the ability to dissipate energy and compared 
with equivalent linear viscous damping it can be 
replaced by equivalent force  . In this 

case the energy dissipated per cycle in both cases 
has to be the same [2], ie: 
 

                             (3) 
 

The energy dissipated by dry friction  can be 
determined as follows: 
 

                    (4) 
 

where: 
 

. 
 

Let us mark , so , so that 
). 

We change variable  and we have 
, and the limits of integration become 

, for t=0, in which case          
,   for t=T, and 

 or . In this case we 
have: 
 

     (5) 
 

or 
       (6)     

 
In Figure 3 there are presented the curves x, 

 and  time domain and the function sign [cosu] 
signifies the opposite change of speed   
with the frictional force μN. This could be 
written: 
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Fig 3 Curves x,  and  
 

So relation (6) can be written: 
 

 

=            (7) 

 

 

Passing to the variable , we have: 
 

 

 
or 
 

    (8) 

 
where finally we obtain: 
 

                     (9) 

 
where   is the phase difference between the 
instant movement x(t) and force F(t). 

The dissipated energy in viscous element 
with constant c, for a stationary stable regime 
with pulsation ω of the forced regime, with 

, is [4]: 
 

                        (10) 
 

so the relation (3) becomes: 
 

 
 
from where 
 

                 (11)  
 

Taking into account that only for resonance 
condition: 

 

, ,  

 
viscous force equilibrium is showed with 

disruptive force, we have:  
 

 
                        (12)   

 
 

where   with , i.e. near 
the resonance.  

Knowing , we obtain the 
equivalent critical damping fraction , so 

 

 
 
or 
 

                         (13) 
 

If friction forces  generate the 
deformation  of elastic element k, then , 
and (13) can be written: 

 
                        (14) 

 
Outside of resonance regime, i.e. for , 

amplitude , and critical damping 
fraction  depends on the excitation pulsation  
as follows: 

 

              (15) 

or 

                (16) 

The differential equation equivalent to the 
equation (1) is of the form: 

 

               (17) 

 

-cos u(t) 
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With solution of forced vibration: 
 

                 (18) 

where A and  is determined from the condition 
of checking the differential equation (16). Thus, 
by replacing x, (x) and x ̈ in (17) we obtain: 
 

 

or 

              (19) 

where                   
             

 

or                        

                  (20) 

where , iar , so we have 

 

where   is the equivalent deformation given by  
the dry friction force . 

Equation (19) can be written as: 
 

               (21) 

where we finally obtain: 
 

              (22) 

 

with motion condition A>0, i.e. 

 

Where , and function H>0 

corresponds to . 
The physical sense corresponds only for 

, where from . Finally, the 
condition of physical sense is: 

 

 

or 

                            (23) 

Phase difference  results: 
 

 

 

It replaces   with relation (22) and we 
obtain: 

                           (24) 

Under condition , where from 

 or . 
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