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ABSTRACT 
 

The paper studies, from the electromechanical point of view, a medical 
apparatus designed for spine treatment by vibrations. The differential 
equations of motion of the system have been obtained by using Lagrange 
equations of the second species, in the form specific to electromechanical 
systems with electrical part coupled to the mechanical one. The obtained 
nonlinear differential system has been integrated numerically, considering 
the cases of undamped and damped free vibrations, respectively.  
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1. GENERAL CONSIDERATIONS 
 

The paper studies a medical apparatus 
designed for spine treatment by vibrations 
produced by an electromechanical device 
(Fig. 1). 
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Fig. 1. Medical apparatus for treatment by vibrations 

The main parts of the system are: 
1. adjustable platform, with various inclination 

angles with respect to the horizontal plane, 
for supporting the body; 

2. elastic column, that contains the 
electromechanical device, which produces 
and transmits the vibrations; 

3. leg support. 
Depending on the height of the subject, the 

elastic column 2 can be fixed at a certain 
distance H  from the horizontal plane. 

The device transmits to the spine vibrations 
of a certain frequency, that contribute to its 
fortification, diminishes the risk of beak growth 
and they stop the evolution of some 
diseases [2]. 

Taking into account the purpose of the 
paper, the analysis of the electromechanical 
device must consider certain frequency 
domains, so that it fulfils medical prescriptions 
and it does not harm the organ upon which it 
acts, by nonadequate values that could produce 
resonance phenomena. 

2. STUDY MODEL 
For the study, the model of an 

electromechanical device is considered (Fig. 2), 
consisting of the plate 4, in contact with the 
support 3. The plate is connected to the fixed 
part of the device by means of the elastic 
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elements with the constants k  and k   and of 
the system of four hinged bars, each with mass 
M  and length l . The hinges are considered 
material points with mass m . The plate is acted 
by the movable plunger 5 of a coil 7, with the 
fixed magnetic core 6. The coil is connected to 
constant voltage source u  and to a linear 
resistor R . The motion of the movable plunger 
modifies the height s  of the plane air gap and, 
consequently, the magnetic inductance, which 
produces the variation of the current in the 
circuit. This variation can be observed on the 
oscilloscope 8. 
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Fig. 2. Mechanical model 
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Fig. 3. Significant dimensions 

The variation of the inductance is [3] 
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where the following notations were used 
(Fig. 3): 
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0
  – magnetic constant; 

N  – number of turns; 
d  – loop diameter; 
h  – height of the cylindrical air gap; 
b  – width of the cylindrical air gap; 

4
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dA 

  – area of the plane air gap; 

dhA 1  – area of the cylindrical air gap; 

0h  – total height of the movable plunger 
and of the central part of the magnetic core. 

The constants   and   in formula (1) have 

the expressions: 
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Plate 4 has the mass 1M , which contains 
also the part it supports, of the mass of the 
subject. 

For a constant voltage u , a static 
equilibrium position is obtained, influenced by 
the attraction force 
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where 

 
R
ui 0 . (5) 

3. FREE UNDAMPED VIBRATIONS 
The model of the electromechanical system 

shown in Figure 2 has two degrees of freedom, 
defined by the following independent 
parameters: angle   and electric charge q . 

The differential equations of the free 
undamped vibrations of the system with 
electrical part coupled to the mechanical one 
[3], [4], [6] can be obtained by using Lagrange 
equations of second species, 
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where E  is the kinetic, for a while Q  and qQ  
are the generalized forces. 

The generalized forces can be expressed by 
using the force function U  and the dissipation 
function  : 
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In order to obtain the differential 
equations, first the coordinates of the 
significant points of system are written: 
- the center of mass 1C  of the plate 4, 
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where 1h  is the height of point 1C  with 
respect to hinges A  and B ; 

- a point S  on the bar EC , situated at the 
distance   from the hinge E , 
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where ABEFl 1 ; 
- a point S   on the bar FD , situated at the 

distance   from the hinge E , 
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- a point P  on the bar AC , situated at the 
distance   from the hinge A , 
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- a point P  on the bar BD , situated at the 
distance   from the hinge B , 
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By differentiation, the components of the 
velocities can be obtained and, subsequently, 
their moduli: 
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The velocities of the points C  and D  can 
be obtained from formula (14), choosing l : 

 2222  lvv DC . (16) 

Similarly, the velocity of the mass center 
2C  of the bar AC  can be obtained from formula 

(15), choosing 
2
l : 
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These velocities are used to determine the 
kinetic energy of the elements of the system, as 
follows: 
- for the plate, 
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- for bars AC  and BD , 
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- for the hinges C  and D , 
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Taking into account also the energy of the 

magnetic field 2

2
1 qLEL   [3], [4], the kinetic 

energy of the whole system is 
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The force function corresponding to the 
weights, to the elastic forces, and to the voltage 
source, is 
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where 0x  and 0y  are the undeformed lengths of 
the horizontal and vertical springs, respectively, 
while 

  glMmMD 1322  . (25) 

The dissipation function due to the resistor 
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is: 

 2

2
1 qR  . (26) 

Calculating and replacing the derivatives, 
equations (6) take the form 
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By replacing the derivative of the 
inductance, 
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system (27) becomes 
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This system of two second-order 
differential equations is equivalent to another 
one, consisting of three first-order differential 
equations: 
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This system can be integrated 
numerically [1]. 

4. EQUILIBRIUM POSITION 
The static equilibrium position of the 

system [5], necessary for dimensioning the 
length 0h , can be determined from (30), by 
replacing: 
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It follows successively: 

  
 




























.
0sincos2

cossin2

sin
2
1

0

000

000

0
2
0

0

uRi
lylk

lxlk

DiL

 (32) 

 
 

 
  .0sincos2

cossin2

sin
)cos2(1

sin

000

000

0
2
02

00

0









lylk
lxlk

Di
hl

l

 (33) 

The transcendental equation (33) can be 
solved numerically. 

5. FREE DAMPED VIBRATIONS 
 
The viscous damping of the system in 

Fig. 2, achieved by connecting bars EC  and 
FD  to the fixed element by viscous dampers, 
manifests itself by the presence of a term c  in 
the first equation (27): 
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This system can be brought to a form 
similar to (30) that can be integrated 
numerically. 

6. NUMERICAL APPLICATION 
The following numerical values have been 

considered: 

 kg501 M , kg1m , kg2M , 

 m5.0l , m35.00 x , m35.00 y , m66.00 h , 
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Fig. 4. Free undamped vibration - variation of   
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Fig. 5. Free undamped vibration - variation of   
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Fig. 6. Free undamped vibration - variation of i  
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Fig. 7. Free undamped vibration - variation of s  

The static equilibrium position has been 
found for rad 0.8190  , that corresponds to a 
height of the plane air gap m 0.0230 x  

Figures 4-7 illustrate the variation of 
quantities  ,  , i  and s  in the case of free 
undamped vibrations, i.e. when the damping 
was neglected. 

The variation of the same quantities is 
illustrated in Figures 8-11 in the case of free 
damped vibrations, with a damping coefficient 

20c . 
 

  
[rad] 

0 1 2 3 4
0.78

0.8

0.82

0.84

0.86

 
 t [s] 

Fig. 8. Free damped vibration - variation of   
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Fig. 9. Free damped vibration - variation of   
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Fig. 10. Free damped vibration - variation of i  
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Fig. 11. Free damped vibration - variation of s  

7. CONCLUSIONS 
The analysis with Lagrange equations of 

the second species allows it to determine the 

differential equations of motion, taking into 
account both mechanical and electrodynamic 
characteristics of the electromechanical system 
proposed by the authors (Fig. 2).  

Considering that the electrical subsystem 
has been subjected to a constant voltage, the 
obtained differential system has been studied, 
first, without and then with damping. For the 
adopted numerical values, the time variations of 
some characteristic quantities (angle  , angular 
velocity  , current i  height s  of the plane air 
gap) have been plotted. Despite the nonlinearity 
of the system, these quantities exhibit a 
periodic and a pseudoperiodic behavior, 
respectively. 

Further studies should be dedicated to the 
case of the forced vibration, produced by an 
alternative voltage applied to the device. 
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