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ABSTRACT 
 

The goal of this paper is to present a generalization of the Juravski 
formula (appropriate for the beams with constant cross section, subjected 
to non-uniform bending), for the beams with variable cross section. 
In the first part of the paper are presented calculus hypotheses and is 
deducted the generalized formula and in second part, the new formula is 
applied for a few particular cases of beams with variable cross section and 
the results are verified using similar results from specialty literature and 
the element finite method. Also, some observations and comments are 
made. 
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1. PRELIMINARY 

It is known that in the case of beams with 
constant cross section, subjected to non-
uniform bending, the shear stresses are 
calculated using the Juravski formula. 

For the Juravski formula deduction, besides 
assuming constancy of the beam cross section, 
are accepted Coulomb's hypothesis (indepen-
dence of action of bending moment and shear 
force, [1]) and the hypothesis according to 
which the shear stress is constant along a 
parallel with neutral axis of the cross section. 

For all of the following considerations, it is 
assumed that the forces acting on beam are 
located in xOy  plan, Oy  and Oz  being axes of 
the beam cross section. Also, Oz  axis is the 
neutral axis of the cross section. Finally, is 
denoted by h  the height of the cross section 
and the length of the beam is denoted with l . 

The Juravski formula is valid for regular 
beams ( 2hl ), in accordance with the classi-
fication of [1], in areas where are not applied 
concentrated loads and the variation of the 
shearing force may be neglected. It should be 
noted that the formula is used only for beams 
which have lh  ratio large enough not to be 
able to neglect the discrepancy between 
Bernoulli 's hypothesis and the tendency of 

deviation from flatness of the cross-sections of 
the bended beam. 

In accordance with the Juravski formula, 
the maximum shear stress xy occurs at the neu-
tral axis and is zero at both the top and bottom 
cross section of the beam. 

In most courses of strength of materials it is 
deduced the Juravski formula, pointing out that 
if the cross-section of the beam is variable, one 
can apply the same formula and results have an 
acceptable level of error if changes of the cross 
section along the beam, are slow [3].  

Furthermore we will deduct a more general 
formula than the Juravski formula and we will 
present some checks and conclusions regarding 
this new formula. 
 

2. THE GENERALIZATION OF THE 
JURAVSKI FORMULA 

Let us consider a beam which complies 
assumptions listed in the previous paragraph, 
with variable cross section. We examine the 
equilibrium in axial direction of a beam 
element, delimited by two transversal planes 
and a longitudinal plane, parallel to the neutral 
plane (see Fig. 1). 

Be d ,  an element of area in cross section 
and y , the distance from it to the neutral axis. 
The equation of equilibrium of forces in axial 
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direction of the beam element is: 
 
   

 


d
yxbdxddd  (1) 

Remark. The surface on which the shear 
stresses yx  are applied can be considered 
rectangular, without restrict generality, because 
in the calculations below, the higher-order 
small terms will be neglected. 
 

Fig. 1. Element of beam with variable cross-section 
 
Are denoted by iM  and zI  the bending 

moment in the cross section current, respecti-
vely the axial second area moment of the cross 
section with respect to the neutral axis. It is 
also noted with zS  the static moment, with 
respect to neutral axis of the part in the current 
section, located below the longitudinal plane 
which includes the shear stresses yx . 

Taking into account the Navier 's formula, 
with the above notations, equation (1) becomes 
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Observing that the integrals in (2) are static 
area moments, we find: 
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After performing calculations in (3) and 
neglecting small higher-order terms, taking into 
account the principle of shear stresses parity, is 
obtained: 

 

 
z

z
i

z
z
ii

z

xy bI
dx

dSM
dx

dI
I
M

dx
dMS 










  (4) 

 
The obtained formula allows for the calcu-

lation of the shear stresses xy  in cross sections 
of the beam subjected to non-uniform bending, 
the cross section of the beam being variable. 

Remark. If the cross section is constant 
along the beam, the derivatives of the 
geometrical characteristics zI  and zS  are 
cancelled, resulting the Juravski formula. 

Another important aspect is related to the 
value of the shear stresses xy  in the areas of 
the cross section which are located at the 
extreme distances from the neutral axis. In the 
case of the beams with constant cross section, 
these stresses are always zero because zS  is 
cancelled in the Juravski formula. As shown, in 
accordance with equation (4), for beams with 
variable cross section, shear stress xy  are no 
longer cancelled in the mentioned areas, but 
possibly for a particular location of the cross 
section in which the calculation is made . 

Also, for beams with variable cross section, 

xy  maximum shearing stress does not occur in 
any section, in neutral axis, like in the case of 
the beams with constant cross section.  
 
3. CASE STUDY 

We propose to study the case of beams with 
variable rectangular cross section, the height of 
the section ( h ) being variable. In Figure 2 is 
shown an element of such a beam. 

 

 
Fig. 2. Element of beam with variable rectangular 

cross-section 
 
To obtain the formula for calculating the 

shear stress ( xy ) is used the general formula 
(4), which, after a series of elementary 
transformations, can be written as:  
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Knowing that for the case considered, 

12bhI 3
z   and   2y4hbS 2

z  ,  after cal-
culations, we get: 
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We examine the case of a cantilever loaded 
with a concentrated force on the free end, with 
rectangular cross section with constant width 
( b ) and linear variable height ( h ), according to 
the law: 

 

   0k    ,l,0x       
l
xk1hh 0 





   (6) 
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Fig. 3. Cantilever with linear variable rectangular 

cross-section 
 
Since the bending moment is PxMi  , 

based on relations (5) and (6), we obtain: 
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For 1k   is obtained the particular case 

presented in [2].  
Equation (7) allows us to analyze, in a 

certain section of the beam, how shear stress 
depends on the distance from the neutral axis. 
This analysis is possible by observing that in a 
certain section (x fixed), shear stress xy  is a 
function of degree 2, with variable y. 

In this context, there are three cases: 
a) k/l5.0x0   - shear stress varies with 

a parabola which has the maximum value in the 
neutral axis of the section. Shear stress has 
minimum values at both the top and bottom of 
the cross section. 

b) k/l5.0x   - shear stress does not 
depend on the variable y, parable inside 
brackets from (7) degenerating into a line 
parallel to the Oy axis. 

c) lxk/l5.0   - shear stress varies with 
a parabola which has the minimum value in the 
neutral axis of the section. Shear stress has 
maximum values at both the top and bottom of 
the cross section. 

It is important to note that the cross section 
located at distance k/l5.0x   from the free 

end of the beam is the border between two areas 
in which the beam has an essentially different 
behaviour:  

- Area where maximum shear stress has 
the maximum value in the neutral axis of the 
cross section. 

- Area where the shear stress has maxi-
mum values at both the top and bottom of the 
cross section (area where is observed a pro-
nounced deviation from the Juravski formula).  
In this case, considering that the normal 
stresses caused by bending have maximum 
values also at the extremities of the cross 
section, it follows that in this area of the beam 
the state of stresses in beam is more 
pronounced than it would result from the 
application of the Juravski formula. 

The above considerations allow for an 
evaluation of the level of error produced by 
using the Juravski formula for beams with 
variable section. It is also observed that with 
the increasing of the coefficient k  (the 
variation of the cross-section is more abrupt 
along the beam), the length of the area with 
pronounced deviation from the Juravski 
formula, is higher.  

We will customize relation (7) for different 
values of the variable x, so we will find the 
laws of variation of shear stress xy ,  depending 
on the distance y from the neutral axis. We will 
consider cross sections for which: 0x  , 

l25.0x  , l5.0x   and l75.0x  . 
• For 0x  : 
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To the upper and lower extremities of the 

cross section ( 0h5.0y  ) shear stresses can be 
calculated with the following formula: 

 
 0xy   (9)  

  
At the neutral axis ( 0y  ) shear stress can 

be calculated with formula: 
  

 
0

xy bh
P5.1  (10) 

 
• For l25.0x  ,   0hk25.01h  : 
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To the upper and lower extremities of the 
cross section (   0hk25.015.0y  ) shear 
stresses can be calculated using formula: 
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At the neutral axis ( 0y  ) shear stress can 

be calculated with formula: 
 

 
  02xy bh

P
k25.01

5.1 


  (13) 

 
• For l5.0x  ,   0hk5.01h  : 
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To the upper and lower extremities of the 

cross section (   0hk5.015.0h  ) shear 
stresses can be calculated using formula: 
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At the neutral axis ( 0y  ) shear stress can 

be calculated with formula: 
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• For l75.0x  ,   0hk75.01h   and: 
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To the upper and lower extremities of the 

cross section (   0hk75.015.0h  ) shear 
stresses can be calculated with the following 
formula: 
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At the neutral axis ( 0y  ) shear stress can 
be calculated with formula: 
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- For lx  ,    0hk1h   and: 
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To the upper and lower extremities of the 

cross section (   0hk15.0h  ) shear stresses 
can be calculated using the following formula: 
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At the neutral axis ( 0y  ) shear stress can 

be calculated using formula:  
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The numerical checking of the formulas 

previously obtained was done using the finite 
element method, considering the following 
numerical data: 1k  , mm 20b  ,  mm 20h0  , 

mm 400l  , N 10P  . 
Pre-processing of the problem and post-

processing of the numerical obtained results 
were performed using a FEA platform. 

The beam was modelled using hexahedral 
parabolic finite elements in order to increase 
the accuracy of results. Also to ensure high 
accuracy of results has been opted for a high 
density mesh. In this context, the beam was 
modelled using 2256 finite elements, connected 
through 14,517 nodes.  

To reduce the local effect generated by the 
mode of application of the force, it was 
distributed evenly over the nodes located along 
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the neutral axis of the section located in the 
free end. The rigid fixing of the beam was 
modelled by removing all degrees of freedom of 
the nodes located in the section with maximum 
height. 

In Figure 4 is shown a screen capture taken 
from FEA platform which presents the variation 
of the shear stresses both along the beam and 
the height of the cross sections. It is noted, 
first, a clear delimitation in the middle of the 
beam, (case 1k  ) between the areas above 
discussed. In Figure 4, side from the right there 
is the area of the beam where a pronounced 
deviation from the Juravski’s formula is. 

Secondly, it is noted the local effect of 
boundary conditions (loading and fixing 

conditions). It is highlighted the fact that the 
above formulas do not "catch" these local 
effects. 

Figure 5 presents a detail located near the 
half of the beam. In this figure are shown the 
nodes located on the axis Oy  from the middle 
cross section of the beam. 

Table 1 contains values of the shear tension 
from nodes shown in Figure 5 calculated with 
properly customized formulas (14), those found 
using finite element method and their relative 
errors. It is noted that the relative errors are 
very small, which justifies the above formulas. 

 

Fig. 4. Variation of the shear stresses 
 
 

Fig. 5. Detail at the middle of the beam 
 

Table 1 

Node xy – formula (14) (N/mm2) xy – FEA (N/mm2) Relative error 
(%) 

8628 21066714.1   0284.0  

9078 21066636.1   0184.0  

8803 

  2106.1   

21066558.1   0652.0  
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9388 21066565.1   0610.0  

8799 21066572.1   0568.0  

9389 21066608.1   0352.0  

8805 21066644.1   0136.0  

8931 21066672.1   0032.0  

1936 21066698.1   0188.0  

397 21066672.1   0032.0  

270 21066644.1   0136.0  

854 21066608.1   0352.0  

264 21066572.1   0568.0  

853 21066565.1   0610.0  

268 21066558.1   0652.0  

543 21066636.1   0184.0  

93 21066714.1   0284.0  
 

4. CONCLUSIONS 
 The use of the Juravski's formula for 

beams with variable cross section subjected to 
non-uniform bending may lead to unacceptable 
errors, especially in case of abrupt variation. 
The generalized formula (4) can be applied, 
properly customized, in many practical 
situations and allows for an accurate assessment 
of the state of stress (obviously, within the 
assumptions imposed) that is developed in such 
beams subjected to non-uniform bending. 
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