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ABSTRACT 
 

The purpose of this article is to present the formulae for calculating the 
parameters defining the finite element meshes with variable dimensions in 
arithmetical progression along some user defined paths within the domain 
of analysis. Also, it is presented an analysis of the conditions of existence 
of the formulae previously deducted. 
In the final part of the article, the deducted formulae are used in a case 
study for their validation and some conclusions are formulated. 
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1. PRELIMINARY 

It is known that one of the essential 
conditions for obtaining accurate results in 
finite element analysis is to generate an optimal 
mesh for the analysis domain. Therefore, the 
current finite element analysis environments 
provide many tools to control mesh generation. 
Generally, the internal mesh generators of the 
current finite element environments for mesh 
generation provide an automatic generation of 
mesh with finite elements having dimensions 
adapted to the geometry of the analysis domain. 
However, automatic mesh generation can not 
ensure the existence of the nodes and / or of the 
finite elements along a certain path (straight or 
curved) in the analyzed domain. It is important 
to emphasize that the imposition of such 
conditions is dictated by the need to study the 
variation of the results values along certain 
paths in the analyzed domain. Also, in many 
cases, it is necessary a variable density of the 
finite elements (default of the nodes) along the 
imposed paths. 

In this context, the algorithms used in auto-
matic generation of meshes, no matter how 
proficient they are, can not replace the choosing 
and the discernment on the goals pursued by the 
analysis, of an eminently human process. 
Therefore, is reached the semi-automatic 
generation of the mesh, when the user must 
impose the size of the finite elements and how 
these dimensions are variable, along certain 
paths imposed in the analysis domain. 

If we refer to the laws of variation of the 
finite element dimensions along specified paths 

in the analysis domain, most finite element 
analysis environments use two laws: variation 
in arithmetic progression and variation in 
geometric progression. When using any of the 
two laws mentioned above, user is prompted to 
enter the following information: 
- information required for locating the path or 
the sub-domain subjected to the semiautomatic 
meshing, 
- dimension of the "middle” finite element or 
the number of finite elements to be generated 
with nodes on the imposed path, 
- the ratio between the maximum and minimum 
size of the finite elements which have nodes on 
the imposed path, 
- information required for locating the 
agglomeration of the finite elements. In this 
context for straight or curved paths there are 
four possibilities for location of the 
agglomeration: at the beginning, at the end, at 
the beginning and the end, or in the middle of 
path. 

Based on the foregoing aspects, it is noted 
that although the information inputted is 
necessary and sufficient for finite element 
environment to generate mesh, the user still 
does not have a complete view of this process. 
In this context, for a total control of the mesh, 
it is necessary to know the dimensions of all 
finite elements to be generated, the obtained 
level of agglomeration, and the necessary and 
sufficient conditions for the existence of the 
formulas that govern this process. 

This paper provides the necessary results 
for completing the image on the semi-automatic 



FASCICLE XIV                                     THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
 

 46 
 
 

generating process of the mesh. Also, are de-
ducted the necessary formulae in the control of 
the parameters of the mesh, using the following 
hypotheses: the dimensions of finite elements 
with nodes on the imposed path are in arith-
metic progression, the finite element agglome-
ration is located at the beginning of the curve 
representing the imposed path. For other cases 
(variation of the dimensions in geometrical pro-
gression and other locations for the finite ele-
ments agglomeration), the calculus formulae 
can be deducted based on a similar algorithm. 
 

2. CALCULUS FORMULAE. 
ANALYSIS OF THE CONDITIONS OF 

EXISTENCE 
After the indication of necessary inputs for 

the semiautomatic meshing, finite element 
analysis environment generates a mesh so that 
on the indicated path, distances between 
successive nodes, form an arithmetic 
progression. 

The following notations will be used: 
n  - number of the finite elements on the 
specified path, to be generated in the meshing 
process, 2n ,Nn   
b  - bias factor (ratio of maximum size and 
minimum size of the finite elements with nodes 
along the specified path), 1b ,Rb   
a  - length of the curve representing the path 
along which will be generated nodes at 
distances in arithmetic progression 
r - constant difference of the consecutive terms 
in arithmetic progression 

ka  - length of any segment, located on the 
specified path, nk1 ,Nk   

Furthermore, are considered known a , b , n  
and the location of the finite element 
agglomeration (assumed at the beginning of the 
curve representing the path specified). With 
these inputs, we will determine the formula of 
the constant difference, r ,  and formula of the 
length ka . Since the ka  lengths are terms of an 
arithmetic progression, there are the following 
relations: 

  r1kaa 1k   (1) 

and 

 
 

2
aana n1   (2) 

Given the bias factor definition, we have: 

 1n baa   (3) 

If it is eliminated na  between relations (2) 

and (3), we obtain: 

  1bn
a2a1 

  (4) 

To determine the constant difference r , 1a  
and na  are eliminated between relations (1) for 
case k = n, (3) and (4). After calculations, we 
obtain: 

   1b
1b

1nn
a2r





  (5) 

Taking into account the expressions of 1a  
and r ,  given by relations (4) and (5), based on 
relation (1), we can determine the calculus 
formula for the length of any segment ka , 
depending on known quantities: 

     











1n
1b1k1

1bn
a2ak  (6) 

Remarks 
- The condition imposed to the bias factor 
( 1b ,Rb  ) is a necessary and sufficient 
condition for ensuring the variable length of the 

ka  segments. Indeed, if the bias factor tends to 
become equal to unity, by reaching the limit in 
(6), we obtain: 

    
n
a

1n
1b1k1

1bn
a2lima

1b
k 
























(7) 

The result obtained in (7) shows that all 
segments have the same length, in other words, 
in the meshing process are generated finite ele-
ments with nodes placed equidistantly on the 
imposed path. The same conclusion can be for-
mulated when in the formula of the constant 
difference r  - formula (5) - is reaching the 
limit: 

   0
1b
1b

1nn
a2limr

1b
lim 

















 (8) 

which means that the arithmetic progression 
degenerates into a constant series of real 
numbers. 
- The level of the finite elements 
agglomeration at the beginning of the imposed 
path is given by the value of the bias factor and 
the number of finite elements with nodes 
located on the path. To characterize this 
agglomeration can be calculated the  parameter 

ac  , representing the fraction of the total 
length of the path which is "covered" by the 
first m  segments ( m1 a,...,a ). For this purpose, 
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we use equation (2), properly transformed, 
where 1a  is calculated using the formula (4), 
and ma  is given by (6), where k  index is 
replaced with m  index. After performing the 
calculation, the following formula is obtained: 

   











1n
1m1b2

1b
a

n
mc  (9) 

or: 

   











1n
1m1b2

1b
1

n
m

a
c

 (9a) 

Based on the above, the high agglome-
rations are characterized by the small fractions 
c  and by the large numbers m . 
Assuming that it is desired a certain level of 
agglomeration of finite elements, it is necessary 
to impose fraction ac   and the number of 
segments, nm  . 

We propose, in what follows, to determine 
the bias factor and the existence conditions for 
a desired agglomeration of the finite elements 
on the imposed path. In this context, we empha-
size the importance of the above mentioned 
conditions, because the simple requirement 
concerning the c  length ( ac  ) and of the 
number m  of segments ( nm  ) may be 
insufficient to achieve the desired level of the 
agglomeration. 

The calculus formula of the required bias 
factor is based on the relation (9a) where, for a 
simpler form of the result, we use the following 
notations: 

 
a
cA  , 

n
mB   (10) 

After performing the calculation, the 
following formula is obtained: 

 
 

  1
ABBAn

B1nB2b 2 



  (11)  

The first condition which is necessary to 
ensure the imposed level of agglomeration is: 

 BAnmac   (12) 

Indeed, assuming that nmac   and 
taking into account (9a), it follows: 

   1
1n
1m1b2

1b
1 









, (13) 

from where, after some elementary calculations, 
is reached the absurd inequality nm  .  

The second condition of existence is 
obtained from the imposition of a plausible bias 
factor ( 1b  ). Based on the relation (11), after 

some simple calculations, the following inequa-
lity is deducted: 

   0
ABBAn

AB
2 




 (14) 

from which, taking into account (12), we obtain 
the existence condition required: 

   0ABBAn 2   (15) 

or: 

 
 
 1nn

1mm
a
c


  (15a) 

To summarize, for an imposed level for the 
agglomeration of the finite elements, it is 
necessary and sufficient that the parameters a , 
c , m , n  meet the following inequalities: 

 
 
  n

m
a
c

1nn
1mm 




 (16) 

or: 

 
 
  n

mac
1nn
1mma 


  (16a) 

Practically, in order to achieve a desired 
level of agglomeration of the finite elements on 
the specified path, first it is imposed the m  
number, then, based on the double inequality 
(16) are determined the limits of the c  fraction, 
lower values being associated with high agglo-
merations. 
 

3. CASE STUDY 
In order to illustrate the use of the results 

presented above,  it is considered the case where 
is required the mesh generation for the plate 
from Fig. 1a. For given plate it is imposed to 
determine the equivalent stresses (based on the 
adoption of a strength theory) around the hole, 
on the following directions: the directions of 
the coordinate axes and the directions which are 
inclined at 450, 1350, 2250 and 3150 towards 
OX axis. 

For reasons of symmetry, for the study of 
the plate behaviour, it is sufficient to model 
with finite elements only a half of the plate, 
determined by the OX axis. Obviously, for 
nodes located on the OX axis the necessary 
conditions must be imposed for them to 
maintain on the longitudinal axis of symmetry. 

The mesh which is associated with this 
model is obtained by reflecting relatively to OY 
axis of the mesh associated with plate sub-
domain which is located in the first quadrant 
(Fig. 1b). 

For generating the mesh which is associa-
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ted to the sub-domain in Fig. 1b, there must be 
considered the imposed directions for the study 
of the equivalent stresses variation. 

To achieve the above listed objectives, for 
the sub-domain in Fig. 1b were generated two 
boundary surfaces, as follows: 
- the boundary surface which is bounded by the 
curves 1, 3, 6, 4; 
- the boundary surface which is bounded by the 
curves 2, 4, 7, 8, 5. 
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Fig. 1. Plate subjected to finite element analysis 

a. Entire plate   b. Sub-domain of the plate 
considered in modelling  

 
Note that because it is imposed the 

variation study of the equivalent stresses along 
the oblique directions, is necessary to generate 
two boundary surfaces, which are adjacent 
along the curve 4. 

The mesh which is associated to the sub-
domain in Fig. 1b was obtained with imposing 
the following conditions: 
- on arcs 1 and 2 were placed equidistant 
nodes. The number of nodes on each arc was 
chosen so that the arc be approximated by a 
polygonal line with six line segments. It 
follows that the distance between two consecu-
tive nodes, located on these arcs, is: 

    6,...,2,1k ,mm 308.1ak   

- on curves 6, 7 and 8 were placed equidistant 
nodes, the distance between two consecutive 
nodes being set to the value: 

      8,7,6s ;n,...,2,1k ,mm 5.2a sk   

where sn  is the number of segments on s  
curve. 

- on curves 3, 4, 5 nodes were placed so that 
the distance between consecutive nodes meets 
an arithmetic progression. To ensure that 
appearance and distortion of the finite elements 
is between the acceptable limits were 
considered, for each of these curves, the 
extreme segments with equal length with length 
of the segments which are on the curves located 
in proximate neighbourhood. It follows, for 
each curve the corresponding bias factor, where 
after, based on the formula (4), is obtained the 
number of the finite elements. Under these 
conditions, for curve 3 we have: 

mm 308.1a1  ,  mm 5.2an  , 91.1b  ,  21n  , 
and for curves 4 and 5:  

mm 308.1a1  ,  91.1308.1/5.2b  , 32n  .  
After meshing, it was obtained a mesh, which is 
presented in Fig. 2.  

Fig. 2. The mesh associated to the sub-domain 
of the plate considered in modelling 

 
4. CONCLUSIONS 

Applying the above calculus formulae for 
controlling finite element meshes allows for the 
consideration of all aspects related to optimal 
meshes: perturbations, symmetries, creating 
paths for "collection" of results, etc.  

Moreover, this procedure allows for the 
generation of meshes with controllable density, 
both that the number of finite elements, as well  
the finite element agglomeration, related to 
their location. This creates the premises for 
obtaining numerical models of computation 
with reasonable size while ensuring accurate 
results. 
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