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ABSTRACT 
 

The present paper deals with some aspects of the stresses and deflections 
calculus in case of the cylindrical, naturally twisted bars, with constant 
pitch, on the basis of assumptions on the linear-elastic behavior of the 
material and on the small bending deflections.  
In the first section of the paper,  the main aspects concerning the geometry 
generation and classification of the naturally twisted bars are taken into 
account. Furthermore, the generalized formulas for the above-mentioned 
calculus are presented. Also, some aspects of the generalized formulas 
used are provided.   
In last section of the paper, on the basis of the generalized formulas, a case study 
and conclusions are presented. 
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1. Preliminary 

The naturally twisted bars, known as pre-
twisted bars, or helical rods, are structural 
elements with geometry generated from the 
helical movement of a generator plan domain. 
The axis of the helical movement intersects 
generating domain and is perpendicular to it. In 
this context, any point of the generating plan 
domain, except for the point of intersection 
with the axis of the helical movement, 
generates a no degenerate helical curve. 
In general, naturally twisted bars can be 
classified according to the geometric shape of 
the generating domain,  depending on the 
position of the axis of the helical movement 
about the centre of gravity of the generating 
domain, depending on the nature of the no 
degenerate helical curves and depending on the 
pitch of the helical curves. 
Considering the geometric shape of the gene-
rating domain (which determines the cross sec-
tion of the bar), the naturally twisted bars can 
be with rectangular cross section, with circular 
cross section, etc. 
Taking into account the position of the axis of 
the helical movement about the centre of 
gravity of the generating domain, the naturally 
twisted bars are classified as: 

- Naturally twisted straight bars - the axis of 
revolution intersects the generating domain in 
its center of gravity. In this case, the curve 
generated by the centers of gravity of the cross 
sections is a straight curve identical to the axis 
of the helical movement of the generating 
domain.  
- Naturally twisted curved bars - the axis of 
revolution intersects the generating domain in a 
different point from its center of gravity. In this 
case, the curve generated by the centers of 
gravity of the cross sections is a helical curve. 
Depending on the nature of the helical no 
degenerate curves,  the naturally twisted bars 
are classified as follows:  
- Cylindrical naturally twisted bars - the no 
degenerate helical curves are helical cylindrical 
curves. In this case, the cross section 
dimensions are preserved along the length of 
the bar.  
- Non cylindrical naturally twisted bars - the 
no degenerate helical curves are helical non 
cylindrical curves (e.g. helical conical curves).  
In this case, the cross section is continuously 
variable along the length of the bar, and any 
two cross sections are homothetic. 
Considering the pitch of the no degenerate 
helical curves, the naturally twisted bars can be 
with constant or variable pitch. 
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2. Assumptions and general formulas 
It is considered a cylindrical naturally twisted 
bar, with constant pitch. The cross section of 
the bar has a general shape and the reference 
axes are the central principal axes of inertia. 
The longitudinal axis of the bar is the third axis 
of the reference system. The origin of the refe-
rence system is the centre of gravity of an end 
cross-section of the bar and the positive sense 
of this axis is toward the other end cross-
section of the bar. 
The bar is subjected to bending. Along the bar, 
the bending moment is applied in any cross 
section of the bar in the centre of gravity of the 
section and with the same direction.  
The material is homogeneous and isotropic and 
has linear-elastic behavior. It is assumed that at 
any point of the bar the induced stresses do not 
exceed the limit of proportionality of the 
material.  
Also it is accepted the validity of the small 
deformations hypothesis. 
In Fig. 1 are presented two cross sections of the 
bar: the section located in the origin of the 
reference system and a section of abscissa x. 
 

 
Fig. 1 – Cross sections of the twisted bar 

a – Cross section located in the origin of the 
reference system; b – Cross section of abscissa x 

The notations that were used in Fig. 1 have the 
following meanings: 

GyGz  , - the central principal axes of inertia of 
the cross section; 

 x  ,0  - the angle between the direction of 
the bending moment and Gz  axis, in cross 
section from origin, respectively in cross 
section with abscissa x;  

 x  ,0  - the angle between the neutral axis 
and Gz  axis, in cross section from origin, 
respectively in cross section with abscissa x; 

yz MMM  , , - the bending moment and its 
components on the central principal axes of the 
cross section. 
Let be zI  and yI  second moments of inertia of 
the cross section bar with respect to the central 
principal axes of inertia. 

The studied bar being a cylindrical naturally 
twisted bar with constant pitch, between the 
length of the bar and the pitch of the no 
degenerate helical curves it occurs, the 
following relationship: 
 

 
n
lp   (1) 

  

where *Nn  is the number of turns of the 
generating domain. 
Also, between angles 0  and  x  there is 
obviously the following relationship: 
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Considering a point  yzP ,  in cross section 
with abscissa x, the bending normal stress in 
this point is given by: 
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where the components zM  and yM  of the 

bending moment M  are:  
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The slope of the neutral axis (see Figure 1) is: 
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The extreme values of the bending stress in 
cross section with abscissa x  occur in points 

1P  and 2P  which are at the maximum distance 
from the neutral axis (see fig. 1b): 
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 (6) 

For deflections calculus, we note that under the 
action of the bending moment, in cross section 
with abscissa x, its centre of gravity is moving 
on a perpendicular direction on the neutral axis. 
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In other words, if  xuu   and  xvv   are the 
components of the displacement  xff   of 
the centre of gravity (see Fig. 2), we can write 
the following relationships: 
 

        lxxvxuxf ,0  ,22   (7) 
 
        lxxx ,0  ,tantan   (8) 
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Fig. 2 – Displacement of the centre of gravity in 

cross section with x  abscissa 
The displacements  xuu   and  xvv   can be 
calculated by integrating well-known approxi-
mate differential equations: 
 

 

 

 
 lx

EI
xM

dx
vd

EI
xM

dx
ud

z
z

y

y

,0  ,
  ,

2

2

2

2


















 (9) 

 
For the bi-univocal determination of the elastic 
line of the bar it is also necessary to find the 
angle  x of rotation in current section. 
This angle can be calculated with: 
 

        lxxxx yz ,0  ,22   (10) 

 
Where the rotational components are given by 
the following differential equations: 
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At the end of this paragraph, we note that the 
calculus particularities in case of the naturally 
straight twisted bars bending are dictated 
mainly by the fact that along the bar, the central 
principal axes of the cross section are rotating. 
In this context, the central principal axes are 
with variable directions. Thus, the cross section 
of the bar is constant in terms of geometric 

form (size and shape), but it has a rotated 
variable position with respect to a reference 
section (e.g. cross section from the origin of the 
reference system). 
Another very important aspect is that the com-
ponents  xM z  and  xM y  of the bending mo-
ment, are depending both on the value of the 
bending moment in current cross section  xM  
and the angle of rotation  x . 
Therefore the section where is developed the 
greatest maximum bending stress is not nece-
ssarily the cross section where the maximum 
bending moment occurs.  
 

3. Case study 
In this paragraph is presented a case study to 
highlight the peculiarities of calculus and way 
of solving it.  
The objective of the case study is to highlight 
issues related to locate the position of the dan-
gerous section and to calculate the greatest 
maximum bending stress. 
In this context, is considered a cylindrical natu-
rally twisted cantilever bar with constant pitch. 
The twisted bar has a rectangular cross section 
and in they rigid fixing end (which is 
considered the origin of the longitudinal axis), 
is verifies the relation 00   (see Fig. 3). 
 

 
Fig. 3 – The cross sections of the cylindrical 

naturally twisted cantilever bar 

In Fig. 3 are presented a cross section from 
origin of the reference system and the cross 
section with abscissa x . With b  and kbh   
(  .,ctk   ,Rk   lx ,0)(  ) are noted the 
width and the height of the cross section. 
Since in rectangular section, the most distant 
points from the neutral axis are also the most 
distant points from the central principal axes of 
inertia, the maximum bending stresses in the 
current cross section are given by the following 
relations: 
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Where: 
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Given the general relationship (4), in 
relationship (12) we have: 
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respectively 
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The cantilever bar is loaded by a concentrated 
moment applied to the free end, as seen in 
Figure 4.  
 

x

l

M

 Fig. 4 – Cantilever naturally twisted bar loaded by 
a concentrated moment applied to the free end 

Because the bending moment is constant along 
the bar (    lxctMxM ,0  .,  ), in cross 
section with x  abscissa, the maximum bending 
stress is given by: 
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The position of the dangerous section and the 
corresponding maximum bending stress (the 
greatest maximum bending stress along the bar) 
involves solving the equation: 
 

    0max  x
dx
d

 (17) 

 
which is equivalent to solve the equation: 
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Equation (19) can not be solved until after 
explaining the function module. Noting that the 
argument of the trigonometric functions (19), in 
different cross section, is in different quadrants, 
depending on abscissa of the cross section, after 
calculation we obtain the following equations: 
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where Zq . 
The valid solution in the range  2;0 for any of 
the equations (19) can be expressed by: 
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where 1JJi  , or 2JJi  , or 3JJi  ,  or 

4JJi  ,  depending on which equation (19) is 
solved. The dangerous cross section is the cross 
section where the bending stress is 
 
   vxmaxmaxmax max   (21) 
 

4. Conclusions 
The calculation of bending stresses and defor-
mations for the naturally twisted bars is di-
fficult even in the cases that are characterized 
by significant simplifications. The numerical 
approach by finite element modeling is a 
perfectly viable alternative, although the ob-
taining of the optimal mesh for such geometry 
is not exactly simple. However, it is important 
to note that the major advantage of the 
theoretical study (when it is possible) is given 
by the possibility of generalizing the results, 
and finding the optimum geometry through the 
study of mathematical functions and not by 
successive attempts, as the numerical approach.  
The case study considered a loading for which 
the bending moment is expressed through a 
unique function along the length of the bar. 
Consequently, the intervals for which the gene-
ral equation (17) has been solved were determi-
ned from the condition that the module func-
tions (18) were represented by a unique 
expression. Similarly there can be treated other 
cases in which the loads induce a bending 
moment which can be expressed through a 
unique function along the bar. 
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